【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.

(Ⅰ)如圖,若BC⊙O的直徑,AB=6,求AC,BD,CD的長;

(Ⅱ)如圖,若∠CAB=60°,求BD的長.

【答案】1AC=8BD=CD=5;(25

【解析】

試題()利用圓周角定理可以判定△CAB△DCB是直角三角形,利用勾股定理可以求得AC的長度;利用圓心角、弧、弦的關(guān)系推知△DCB也是等腰三角形,所以利用勾股定理同樣得到BD=CD=5

)如圖,連接OBOD.由圓周角定理、角平分線的性質(zhì)以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5

試題解析:()如圖,∵BC⊙O的直徑,

∴∠CAB=∠BDC=90°

在直角△CAB中,BC=10,AB=6,

由勾股定理得到:AC=

∵AD平分∠CAB,

,

∴CD=BD

在直角△BDC中,BC=10,CD2+BD2=BC2

易求BD=CD=5;

)如圖,連接OB,OD

∵AD平分∠CAB,且∠CAB=60°,

∴∠DAB=∠CAB=30°

∴∠DOB=2∠DAB=60°

∵OB=OD,

∴△OBD是等邊三角形,

∴BD=OB=OD

∵⊙O的直徑為10,則OB=5

∴BD=5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點(diǎn),連接DE.過點(diǎn)AAFDE,垂足為F,⊙O經(jīng)過點(diǎn)C、D、F,與AD相交于點(diǎn)G

(1)求證:△AFG∽△DFC

(2)若正方形ABCD的邊長為4,AE=1,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:PA、PBCD分別切⊙OA、B、E三點(diǎn),PA=6.求:

(1)PCD的周長;

(2)若∠P=50°,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為Rt△ABC的直角邊AC上一點(diǎn),以O(shè)C為半徑的圓與斜邊AB相切于點(diǎn)D,P是弧CD上任意一點(diǎn),過點(diǎn)P作O的切線,交BC于點(diǎn)M,交AB于點(diǎn)N,已知AB=5,AC=4.

(1)△BMN的周長等于多少;

(2)⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如表所示.

x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

下列說法:拋物線與y軸的交點(diǎn)為(0,6); 拋物線的對稱軸在y軸的右側(cè);拋物線一定經(jīng)過點(diǎn)(3,0);在對稱軸左側(cè),yx增大而減。不等式ax2+(b﹣3)x+c﹣6>0解集為﹣2<x<0.其中說法正確的有( 。

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在弧AB上的點(diǎn)D處,折痕交OA于點(diǎn)C,則弧AD的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖乙,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).

(1)如圖甲,將△ADE繞點(diǎn)A 旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是_____

BD=CEBDCE③∠ACE+∠DBC=45°BE2=2(AD2+AB2

(2)若AB=4,AD=2,把△ADE繞點(diǎn)A旋轉(zhuǎn),

①當(dāng)∠EAC=90°時(shí),求PB的長;

②求旋轉(zhuǎn)過程中線段PB長的最大值.

     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列五條結(jié)論: abc<0;4ac-b2<0;4a+c<2b;3b+2c<0;m(am+b)+b<a(m≠-1).其中正確的結(jié)論是_________(把所有正確的結(jié)論的序號(hào)都填寫在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,橋孔拋物線對應(yīng)的二次函數(shù)關(guān)系式是y=﹣x2,當(dāng)水位上漲1m時(shí),水面寬CD2m,則橋下的水面寬AB_____m

查看答案和解析>>

同步練習(xí)冊答案