如圖,點A、F、C、D在同一直線上,點B和點E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.
(1)求證:四邊形BCEF是平行四邊形,
(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時,四邊形BCEF是菱形.

【答案】分析:(1)由AB=DE,∠A=∠D,AF=DC,易證得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四邊形BCEF是平行四邊形;
(2)由四邊形BCEF是平行四邊形,可得當(dāng)BE⊥CF時,四邊形BCEF是菱形,所以連接BE,交CF與點G,證得△ABC∽△BGC,由相似三角形的對應(yīng)邊成比例,即可求得AF的值.
解答:(1)證明:∵AF=DC,
∴AF+FC=DC+FC,即AC=DF.
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS),
∴BC=EF,∠ACB=∠DFE,
∴BC∥EF,
∴四邊形BCEF是平行四邊形.

(2)解:連接BE,交CF于點G,
∵四邊形BCEF是平行四邊形,
∴當(dāng)BE⊥CF時,四邊形BCEF是菱形,
∵∠ABC=90°,AB=4,BC=3,
∴AC==5,
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,
∴△ABC∽△BGC,
=,
=
∴CG=,
∵FG=CG,
∴FC=2CG=,
∴AF=AC-FC=5-=,
∴當(dāng)AF=時,四邊形BCEF是菱形.
點評:此題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、菱形的判定與性質(zhì)以及勾股定理等知識.此題綜合性較強,難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在數(shù)軸上,它們所對應(yīng)的數(shù)分別是-4、
2x+23x-1
,且點A、B關(guān)于原點O對稱,求x的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A為⊙O直徑CB延長線上一點,過點A作⊙O的切線AD,切點為D,過點D作DE⊥AC,垂足為F,連接精英家教網(wǎng)BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,試求CE的長.
(3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點A的坐標(biāo)為(2
2
,0
),點B在直線y=-x上運動,當(dāng)線段AB最短時,點B的坐標(biāo)為(  )
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B在線段MN上,則圖中共有
 
條線段.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點O到直線l的距離為3,如果以點O為圓心的圓上只有兩點到直線l的距離為1,則該圓的半徑r的取值范圍是
2<r<4

查看答案和解析>>

同步練習(xí)冊答案