【題目】中,,的平分線交于點(diǎn),過(guò)點(diǎn)的平分線于點(diǎn)

求證:四邊形是矩形;

當(dāng)滿足什么條件時(shí),四邊形是正方形.

【答案】(1)見(jiàn)解析;(2)當(dāng)時(shí),四邊形是正方形.理由見(jiàn)解析

【解析】

(1)先根據(jù)AB=AC,AD平分∠BAC,得∠BAD=12BAC,ADBC,然后根據(jù)AEABC的外角平分線,可求出ADAE,然后根據(jù)有一個(gè)角是直角的平行四邊形是矩形得到四邊形ADBE為矩形;

(2)根據(jù)矩形的性質(zhì)可知當(dāng)∠BAC=90°時(shí),則∠ABC=BAD=45°,利用等腰三角形的性質(zhì)定理可知對(duì)應(yīng)邊AD=BD,再運(yùn)用鄰邊相等的矩形是正方形,問(wèn)題得證.

,

證明:∵,平分,

,,

的外角平分線,

,

,

,即,

,

,

,

又∵,,

∴四邊形是矩形;

解:當(dāng)時(shí),四邊形是正方形.理由如下:

,平分,

,

,

又∵四邊形是矩形,

∴矩形為正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn)(點(diǎn)P不與點(diǎn)B、D重合),PEBC于點(diǎn)E,PFCD于點(diǎn)F,連接EF給出下列五個(gè)結(jié)論:APEF;APEF;僅有當(dāng)DAP45°67.5°時(shí),APD是等腰三角形;④∠PFEBAPPDEC.其中有正確有(  )個(gè).

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】情境觀察:

如圖1,△ABC中,AB=AC,∠BAC=45°CDAB,AEBC,垂足分別為D、E,CDAE交于點(diǎn)F

①寫(xiě)出圖1中所有的全等三角形 ;

②線段AF與線段CE的數(shù)量關(guān)系是

問(wèn)題探究:

如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,ADCD,垂足為D,ADBC交于點(diǎn)E

求證:AE=2CD

拓展延伸:

如圖3,△ABC中,∠BAC=45°,AB=BC,點(diǎn)DAC上,∠EDC= BACDECE,垂足為E,DEBC交于點(diǎn)F.求證:DF=2CE

要求:請(qǐng)你寫(xiě)出輔助線的作法,并在圖3中畫(huà)出輔助線,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線y=kx與拋物線y=交于點(diǎn)A(3,6).

(1)求直線y=kx的解析式和線段OA的長(zhǎng)度;

(2)點(diǎn)P為拋物線第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;

(3)如圖2,若點(diǎn)B為拋物線上對(duì)稱(chēng)軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,,分別是線段,上的點(diǎn),連接,使四邊形為正方形,若點(diǎn)上的動(dòng)點(diǎn),連接,將矩形沿折疊使得點(diǎn)落在正方形的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為,則線段的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DE分別是AB,AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連CF

(1)求證:四邊形BCFE是菱形;

(2)若CE=6,∠BEF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,已知線段,以為一邊作等邊 (尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);

(2)如圖②,已知,,,分別以為邊作等邊和等邊,連接,求的最大值;

(3)如圖③,已知,,,,內(nèi)部一點(diǎn),連接,求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,小紅到郊野公園游玩,在景點(diǎn)P處測(cè)得景點(diǎn)B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達(dá)景點(diǎn)A,此時(shí)測(cè)得景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)A與景點(diǎn)B之間的距離.(結(jié)果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)當(dāng)天,小明帶了四個(gè)粽子(除味道不同外,其它均相同),其中兩個(gè)是大棗味的,另外兩個(gè)是火腿味的,準(zhǔn)備按數(shù)量平均分給小紅和小剛兩個(gè)好朋友.

(1)請(qǐng)你用樹(shù)狀圖或列表的方法表示小紅拿到的兩個(gè)粽子的所有可能性;

(2)請(qǐng)你計(jì)算小紅拿到的兩個(gè)粽子剛好是同一味道的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案