如圖,反比例函數(shù)y=(k<0)的圖象與矩形ABCD的邊相交于E、F兩點(diǎn),且BE=2AE,E(﹣1,2).
(1)求反比例函數(shù)的解析式;
(2)連接EF,求△BEF的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知正方形ABCD的邊長為2,E是邊BC上的動點(diǎn),BF⊥AE交CD于點(diǎn)F,垂足為G,連結(jié)CG.下列說法:①AG>GE;②AE=BF;③點(diǎn)G運(yùn)動的路徑長為π;④CG的最小值為﹣1.其中正確的說法是 .(把你認(rèn)為正確的說法的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O是正五邊形ABCDE的外接圓,這個(gè)正五邊形的邊長為a,半徑為R,邊心距為r,則下列關(guān)系式錯(cuò)誤的是( )
| A. | R2﹣r2=a2 | B. | a=2Rsin36° | C. | a=2rtan36° | D. | r=Rcos36° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
觀察下列圖形規(guī)律:當(dāng)n= B 時(shí),圖形“●”的個(gè)數(shù)和“△”的個(gè)數(shù)相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線y=(x+2)(x﹣4)與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)設(shè)動點(diǎn)N(﹣2,n),求使MN+BN的值最小時(shí)n的值;
(3)P是拋物線上一點(diǎn),請你探究:是否存在點(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在長方形ABCD中AB=16,如圖所示裁出一扇形ABE,將扇形圍成一個(gè)圓錐(AB和AE重合),則此圓錐的底面半徑為( 。
| A. | 4 | B. | 16 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在△AOB中,C,D分別是OA,OB邊上的點(diǎn),將△OCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到△OC′D′.
(1)如圖1,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點(diǎn),證明:①AC′=BD′;②AC′⊥BD′;
(2)如圖2,若△AOB為任意三角形且∠AOB=θ,CD∥AB,AC′與BD′交于點(diǎn)E,猜想∠AEB=θ是否成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)(﹣2,0),△ABO是直角三角形,∠AOB=60°.現(xiàn)將Rt△ABO繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)到Rt△A′B′O的位置,則此時(shí)邊OB掃過的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com