精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在□ABCD中,BF平分ABCAD于點F,AEBF于點O,交BC于點E,連接EF

(1)求證:四邊形ABEF是菱形;

(2)連接CF,ABC=60°,AB= 4,AF =2DF,CF的長

【答案】(1)證明見解析(2)2

【解析】分析:(1)利用兩對邊分另相等的四邊形是平行四邊形,再根據鄰邊相等的平行四邊形是菱形即可證明;

(2)過點AAGBC于點G,利用等邊三角形的性質、矩形的判定,含30度角的直角三角形即可求出CF的長.

詳解:(1)證明:∵BF平分∠ABC,

∴∠ABF=CBF

□ABCD,

ADB,

∴∠AFB=CBF

∴∠ABF=AFB,

AB=AF

AEBF,

∴∠ABF+BAO=CBF+BEO=90°,

∴∠BAO=BEO,

AB=BE

AF=BE,

∴四邊形ABEF是平行四邊形,

□ABEF是菱形.

(2)解:∵AD=BC,AF=BE

DF=CE,

BE=2CE,

AB=4,

BE=4,

CE=2,

過點AAGBC于點G

∵∠ABC=60°,AB=BE

∴△ABE是等邊三角形,

BG=GE=2,

AF=CG=4,

∴四邊形AGCF是平行四邊形,

□AGCF是矩形,

AG=CF,

ABG中,∠ABC=60°,AB=4,

AG=

CF=,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算.

(1)﹣7+13﹣6+20;

(2)3+(﹣2)﹣3×(﹣5)×0;

(3)16÷(﹣2)3﹣(﹣)×(﹣4);

(4)﹣36×();

(5)(2a2﹣1+2a)﹣(a﹣1+a2);

(6)8a+2b﹣2(5a﹣2b).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】”4.20蘆山地震”發(fā)生后,各地積極展開抗震救援工作,一支救援車隊經過如圖1所示的一座拱橋,拱橋的輪廓是拋物線型,拱高6m,跨度20m,相鄰兩支柱間的距離均為5m,將拋物線放在所給的直角坐標系中(如圖2所示),拱橋的拱頂在y軸上.
(1)求拱橋所在拋物線的解析式;
(2)求支柱MN的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2米的隔離帶),其中的一條行車道能否并排行駛寬2m、高2.4m的三輛汽車(隔離帶與內側汽車的間隔、汽車間的間隔、外側汽車與拱橋的間隔均為0.5m)?請說說你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中.

(1)把△ABC進行平移,得到△A′B′C′,使點AA′對應,請在網格中畫出△A′B′C′;

(2)線段AA′與線段CC′的位置關系是:   ;(填平行相交”)

(3)求出△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點H,G,連接DH,BG.

(1)求證:△AEH≌△CFG;

(2)連接BE,若BE=DE,則四邊形BGDH是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個口袋中有1個黑球和若干個白球,這些球除顏色外其他都相同.已知從中任意摸取一個球,摸得黑球的概率為
(1)求口袋中白球的個數;
(2)如果先隨機從口袋中摸出一球,不放回,然后再摸出一球,求兩次摸出的球都是白球的概率.用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD中,DE⊥AB于E,DF⊥BC于F.
(1)求證:△ADE≌△CDF;
(2)若∠EDF=50°,求∠BEF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發(fā),當其中一點到達端點時,另一點隨之停止運動.

(1)經過多長時間,四邊形PQCD是平行四邊形?

(2)經過多長時間,四邊形PQBA是矩形?

(3)經過多長時間,當PQ不平行于CD時,有PQ=CD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各式

(1)﹣(﹣5)﹣(+7)

(2)|﹣5﹣8|+24÷(﹣3)

(3)﹣0.25÷(﹣×(1﹣

(4)36×

(5)1÷[﹣(﹣1+14

(6)23﹣(1﹣0.5)××[2﹣(﹣3)2]

查看答案和解析>>

同步練習冊答案