精英家教網 > 初中數學 > 題目詳情

【題目】已知,A市到B市的路程為260千米,甲車從A市前往B市運送物資,行駛2小時在M地汽車出現故障,立即通知技術人員乘乙車從A市趕來維修(通知時間忽略不計),乙車到達M地后又經過20分鐘修好甲車后以原速原路返回A市,同時甲車以原來1.5倍的速度前往B市,如圖是兩車距A市的路程y(千米)與甲車所用時間x(小時)之間的函數圖象,下列四種說法:

①甲車提速后的速度是60千米/時;

②乙車的速度是96千米/時;

③乙車返回時yx的函數關系式為y=﹣96x+384;

④甲車到達B市乙車已返回A2小時10分鐘.

其中正確的個數是( 。

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

①甲車提速后的速度:80÷2×1.5=60千米/時,故①正確;

②乙車的速度:80×2÷(2)=96千米/時,故②正確;

③點C的橫坐標為2++=,縱坐標為80,坐標為(80);

設乙車返回時yx的函數關系式y=kx+b,代入(,80)(4,0)得:

解得:

所以yx的函數關系式y=96x+384(x4),故③正確;

(26080)÷6080÷96=3=(小時),即2小時10分鐘,故④正確;

故選:D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2x+ =0有實數根,k為正整數.
(1)求k的值;
(2)當此方程有兩個非零的整數根時,將關于x的二次函數y=x2+2x+ 的圖象向下平移9個單位,求平移后的圖象的表達式;
(3)在(2)的條件下,平移后的二次函數的圖象與x軸交于點A,B(點A在點B左側),直線y=kx+b(k>0)過點B,且與拋物線的另一個交點為C,直線BC上方的拋物線與線段BC組成新的圖象,當此新圖象的最小值大于﹣5時,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內完成;若乙隊單獨施工則完成工程所需天數是規(guī)定天數的1.5倍.如果由甲、乙隊先合做15那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在邊長為2的正方形ABCD中,點P、Q分別是邊AB、BC上的兩個動點(與點A、B、C不重合),且始終保持BP=BQ,AQ⊥QE,QE交正方形外角平分線CE于點E,AE交CD于點F,連結PQ.

(1)求證:△APQ≌△QCE;

(2)求∠QAE的度數;

(3)設BQ=x,當x為何值時,QF∥CE,并求出此時△AQF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解答
(1)先化簡再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.
(2)解不等式組:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,拋物線y=ax2+(a+3)x+3(a≠0)與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點E(m,0)(0<m<4),過點E作x軸的垂線交直線AB于點N,交拋物線于點P,過點P作PM⊥AB于點M.

(1)求a的值和直線AB的函數表達式;
(2)設△PMN的周長為C1 , △AEN的周長為C2 , 若 = ,求m的值;
(3)如圖2,在(2)條件下,將線段OE繞點O逆時針旋轉得到OE′,旋轉角為α(0°<α<90°),連接E′A、E′B,求E′A+ E′B的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高2米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有25米的距離(B,F,C在一條直線上).

(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數據:sin22°≈ ,cos22° ,tan22

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點E是矩形ABCD的對角線BD上的一點,且BE=BC,AB=3,BC=4,點P為直線EC上的一點,且PQBC于點Q,PRBD于點R.

(1)①如圖1,當點P為線段EC中點時,易證:PR+PQ= (不需證明).②如圖2,當點P為線段EC上的任意一點(不與點E、點C重合)時,其它條件不變,則①中的結論是否仍然成立?若成立,請給予證明;若不成立,請說明理由.

(2)如圖3,當點P為線段EC延長線上的任意一點時,其它條件不變,則PRPQ之間又具有怎樣的數量關系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平行四邊形的一邊長是9cm,那么這個平行四邊形的兩條對角線的長可以是(

A. 4cm6cm B. 6cm8cm C. 8cm10cm D. 10cm12cm

查看答案和解析>>

同步練習冊答案