(2006•沈陽(yáng))已知等腰△ABC中,AB=AC,D是BC邊上一點(diǎn),連接AD,若△ACD和△ABD都是等腰三角形,則∠C的度數(shù)是   
【答案】分析:△ACD和△ABD都是等腰三角形,但沒(méi)有說(shuō)具體的邊相等,所以應(yīng)分情況討論.
(1)AD=DC,AC=AD,那么△ADB和△ADC是全等三角形,可求得∠ADC=90°,那么∠C=45°;
(2)AB=BD,CD=AD,那么∠B=∠C=∠DAC,∠BAD=∠BDA=2∠C,然后用∠C表示出△ABC的內(nèi)角和,即可求得5∠C=180°,那么∠C=36°.
解答:解:應(yīng)分兩種情況:
(1)
AD=BD,DC=AD,那么△ADB和△ADC是全等三角形,可求得∠ADC=90°,那么∠C=45°;
(2)
AB=BD,CD=AD,那么∠B=∠C=∠DAC,∠BAD=∠BDA=2∠C,然后用∠C表示出△ABC的內(nèi)角和,即可求得5∠C=180°,那么∠C=36°.
故填36°或45°.
點(diǎn)評(píng):本題考查了全等三角形的判定和性質(zhì)及等腰三角形的性質(zhì);本題的易錯(cuò)點(diǎn)在于判斷此題應(yīng)分情況討論,難點(diǎn)在于畫出圖形,得到各種情況里所求的角的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2006•沈陽(yáng))已知關(guān)于x的一元二次方程x2+4x+m-1=0.
(1)請(qǐng)你為m選取一個(gè)合適的整數(shù),使得到的方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)α,β是(1)中你所得到的方程的兩個(gè)實(shí)數(shù)根,求α22+αβ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)“選擇、填空題”專練(二)(解析版) 題型:選擇題

(2006•沈陽(yáng))已知圓錐的側(cè)面積是12πcm2,底面半徑是3cm,則這個(gè)圓錐的母線長(zhǎng)是( )
A.3cm
B.4cm
C.5cm
D.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)“選擇、填空題”專練(二)(解析版) 題型:選擇題

(2006•沈陽(yáng))已知Rt△ABC中,∠C=90°,BC=9,AB=15,則sinA的值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年遼寧省沈陽(yáng)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•沈陽(yáng))已知關(guān)于x的一元二次方程x2+4x+m-1=0.
(1)請(qǐng)你為m選取一個(gè)合適的整數(shù),使得到的方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)α,β是(1)中你所得到的方程的兩個(gè)實(shí)數(shù)根,求α22+αβ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年遼寧省沈陽(yáng)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•沈陽(yáng))已知兩個(gè)圓的半徑分別是5和3,圓心距是2,則這兩個(gè)圓的位置關(guān)系是( )
A.內(nèi)切
B.相交
C.外切
D.外離

查看答案和解析>>

同步練習(xí)冊(cè)答案