如圖所示,弦OC,F(xiàn)E的延長線交于圓外一點P,割線PAB經(jīng)過圓心O,請你結(jié)合現(xiàn)有圖形,添加一個適當?shù)臈l件:________,使∠1=∠2.

答案:略
解析:

CD=EF


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在以O為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于點B,大圓的精英家教網(wǎng)弦BC⊥AB于點B,過點C作大圓的切線CD交AB的延長線于點D,連接OC交小圓于點E,連接BE、BO.
(1)求證:△AOB∽△BDC;
(2)設大圓的半徑為x,CD的長為y:
①求y與x之間的函數(shù)關系式;
②當BE與小圓相切時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:022

如圖所示,弦OC,F(xiàn)E的延長線交于圓外一點P,割線PAB經(jīng)過圓心O,請你結(jié)合現(xiàn)有圖形,添加一個適當?shù)臈l件:________,使∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年浙江杭州蕭山回瀾初中九年級12月階段性測試數(shù)學試卷(解析版) 題型:解答題

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進行了認真探索.

【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長.

小明和小聰經(jīng)過交流,得到了如下的兩種解決方法:

方法一:延長BO交⊙O與點E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=

感悟:圓內(nèi)接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關系,可構(gòu)成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關系式.

(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點A(3,0)、B(0,),C為直線AB上一點,過A、O、C的⊙E的半徑為2.求線段OC的長.

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設⊙O半徑為x, EF為y.①y關于x的函數(shù)關系式;②求線段EF長度的最小值.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明和同桌小聰在課后做作業(yè)時,對課本中的一道作業(yè)題,進行了認真探索。

【作業(yè)題】如圖1,一個半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測得圓周角∠C=45°,求橋AB的長。

小明和小聰經(jīng)過交流,得到了如下的兩種解決方法:

方法一:延長BO交⊙O與點E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=100;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50,

∴AB=100。

感悟:圓內(nèi)接三角形的一邊和這邊的對銳角、圓的半徑(或直徑)這三者關系,

可構(gòu)成直角三角形,從而把一邊和這邊的對銳角﹑半徑建立一個關系式。

(1)問題解決:受到(1)的啟發(fā),請你解下面命題:如圖2,點A(3,0)、B(0,),C為直線AB上一點,過A、O、C的⊙E的半徑為2. 求線段OC的長。

(2)問題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設⊙O半徑為x, EF為y.

①     y關于x的函數(shù)關系式;②求線段EF長度的最小值。

查看答案和解析>>

同步練習冊答案