【題目】設(shè)ab是一元二次方程x22x10的兩個(gè)根,則a2+a+3b的值為____.

【答案】7

【解析】

根據(jù)根與系數(shù)的關(guān)系可得a+b=2,根據(jù)一元二次方程的解的定義可得a2=2a+1,然后把a2+a+3b變形為3a+b+1,代入求值即可.

由題意知,a+b=2a2-2a-1=0,即a2=2a+1,則a2+a+3b=2a+1+a+3b=3a+b+1=3×2+1=7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組數(shù),可以作為直角三角形的三邊長(zhǎng)的是( 。

A. 7,24,25 B. 5,13,15 C. 2,3,4 D. 8,12,20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+5x+20的兩個(gè)實(shí)數(shù)根為x1,x2,則x1+x2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各點(diǎn)中,在第四象限的點(diǎn)是(
A.(2,4)
B.(2,﹣4)
C.(﹣2,4)
D.(﹣2,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC是等腰直角三角形,BC=AC,直角頂點(diǎn)C在x軸上,一角頂點(diǎn)B在y軸上.
(1)如圖①若AD⊥x軸,垂足為點(diǎn)D.點(diǎn)C坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(0,2),求A點(diǎn)的坐標(biāo).

(2)如圖②,直角邊BC在兩坐標(biāo)軸上滑動(dòng),若y軸恰好平分∠ABC,AC與y軸交于點(diǎn)D,過(guò)點(diǎn)A作AE⊥y軸于E,求證:BD=2AE.

(3)如圖③,直角邊BC在兩坐標(biāo)軸上滑動(dòng),使點(diǎn)A在第四象限內(nèi),過(guò)A點(diǎn)作AF⊥y軸于F,在滑動(dòng)的過(guò)程中,兩個(gè)結(jié)論:① 為定值;② 為定值,只有一個(gè)結(jié)論成立,請(qǐng)你判斷正確的結(jié)論并求出定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】附加題:如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在線段BC上由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

(1)如果點(diǎn)P、Q的速度均為3厘米/秒,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等?請(qǐng)說(shuō)明理由;
(2)若點(diǎn)P的運(yùn)動(dòng)速度為2厘米/秒,點(diǎn)Q的運(yùn)動(dòng)速度為2.5厘米/秒,是否存在某一個(gè)時(shí)刻,使得△BPD與△CQP全等?如果存在請(qǐng)求出這一時(shí)刻并證明;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把能平分四邊形面積的直線稱為“好線”.利用下面的作圖,可以得到四邊形的“好線”:在四邊形ABCD(圖2)中,取對(duì)角線BD的中點(diǎn)O,連接OA、OC.得折線AOC,再過(guò)點(diǎn)O作OE∥AC交CD于E,則直線AE即為四邊形ABCD的一條“好線”.

(1)如圖(1),試說(shuō)明中線AD平分△ABC的面積;
(2)如圖(2),請(qǐng)你探究四邊形ABCO的面積和四邊形ABCD面積的關(guān)系,并說(shuō)明理由;
(3)解:在圖(2)中,請(qǐng)你說(shuō)明直線AE是四邊形ABCD的一條“好線”;
(4)如圖(3),若AE為一條“好線”,F(xiàn)為AD邊上的一點(diǎn),請(qǐng)作出四邊形ABCD經(jīng)過(guò)F點(diǎn)的“好線”,并對(duì)你的畫(huà)圖作適當(dāng)說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BE=CF,AB∥CD,AB=CD.求證:AF∥DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過(guò)程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?

(3)根據(jù)物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

同步練習(xí)冊(cè)答案