【題目】△ABC是等腰直角三角形,BC=AC,直角頂點C在x軸上,一角頂點B在y軸上.
(1)如圖①若AD⊥x軸,垂足為點D.點C坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(0,2),求A點的坐標(biāo).
(2)如圖②,直角邊BC在兩坐標(biāo)軸上滑動,若y軸恰好平分∠ABC,AC與y軸交于點D,過點A作AE⊥y軸于E,求證:BD=2AE.
(3)如圖③,直角邊BC在兩坐標(biāo)軸上滑動,使點A在第四象限內(nèi),過A點作AF⊥y軸于F,在滑動的過程中,兩個結(jié)論:① 為定值;② 為定值,只有一個結(jié)論成立,請你判斷正確的結(jié)論并求出定值.
【答案】
(1)
解:∵∠ACB=90°,
∴∠ACD+∠BCO=90°,
∵AD⊥CD,
∴∠ACD+∠CAD=90°,
∴∠BCO=∠CAD,
在△ACD和△CBO中, ,
∴△ACD≌△CBO,
∴AD=CO=1,DC=OB=2,
∴OD=OC+CD=3,
∴A(﹣3,1)
(2)
解:如圖,
延長AE、BC交于點F,
∵y軸平分∠ABC,AE⊥y軸,
∴AE=EF,
∴AF=2AE,
∵AE⊥x軸,
∴∠EAD+∠ADE=90°,
∵∠ADE=∠BDC,
∴∠EAD+∠BDC=90°,
∵∠ABC=90°,
∴∠BDC+∠CBD=90°,
∴∠DAE=∠CBD,
在△BCD和△ACF中, ,
∴△BCD≌△ACF,
∴BD=AF,
∵AF=2AE,
∴BD=2AE
(3)
解:① 為定值,理由:
如圖3,
作AE⊥OC于E,
∵∠ACB=90°,
∴∠OCB+∠OCA=90°,
∵∠OBC+∠OCB=90°,
∴∠OCA=∠OBC,
在△OBC和△ECA中 .
∴△OBC≌△ECA,
∴OB=CE,
∵AF=OE
∴① = = =1是定值,
② = = = + = +1,而2AF與AB的關(guān)系不知,
∴②不是定值.
即:① 為定值
【解析】(1)先判斷出,∠BCO=∠CAD,從而得出△ACD≌△CBO,求出AD=CO=1,DC=OB=2即可;(2)先利用等腰三角形的判定得出AF=2AE,同(1)的方法判斷出△BCD≌△ACF,得出BD=AF即可;(3)作AE⊥OC,同(1)方法判斷出△OBC≌△ECA得出OB=CE,最后結(jié)合圖形求出①個結(jié)論是定值.
【考點精析】通過靈活運用等腰三角形的性質(zhì),掌握等腰三角形的兩個底角相等(簡稱:等邊對等角)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若用A(2,1)表示放置2個胡蘿卜,1棵小白菜;點B(4,2)表示放置4個胡蘿卜,2棵小白菜:
(1)請你寫出C、E所表示的意義.
(2)若一只兔子從A順著方格線向上或向右移動到達(dá)B,試問有幾條路徑可供選擇,其中走哪條路徑吃到的胡蘿卜最多?走哪條路徑吃到的小白菜最多?請你通過計算的方式說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,∠ADE=∠CDF.
(1)求證:AE=CF;
(2)連接DB交EF于點O,延長OB至G,使OG=OD,連接EG,F(xiàn)G,判斷四邊形DEGF是否是菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)平面上的點P(2,﹣1)向上平移2個單位,再向左平移1個單位后,點P的坐標(biāo)變?yōu)椋?/span> )
A.(2,1)
B.(1,1)
C.(﹣2,1)
D.(4,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠A=35°16′,則其余角的度數(shù)為( )
A.54°44′
B.54°84′
C.55°44′
D.144°44′
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com