精英家教網(wǎng)如圖,有一張直角三角形紙片,兩直角邊AC=6 cm,BC=8cm,D是BC上一點(diǎn),AD=DB,DE⊥AB,垂足為E,CD等于( 。ヽm.
A、
25
4
B、
22
3
C、
7
4
D、
5
3
分析:設(shè)CD等于xcm,可得AD=BD=8-x,在直角三角形ACD中,由勾股定理可得出關(guān)于x的一元二次方程,解之即可得x的值,即CD的長.
解答:解:設(shè)CD等于xcm,則:
BD=(8-x)cm
∴AD=8-x
在直角三角形ACD中,已知AC=6,
則由勾股定理可得:
AD2=AC2+CD2
∴(8-x)2=62+x2
∴x=
7
4

故選C.
點(diǎn)評:本題主要考查了由勾股定理求解直角三角形以及一元二次方程的解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,點(diǎn)B與點(diǎn)A重合,折痕為DE,則CD的長為(  )
A、
25
2
B、
15
2
C、
25
4
D、
15
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,點(diǎn)B與點(diǎn)A重合,折痕為DE,則CD的長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,有一張直角三角形紙片,兩直角邊AC=6cm,BC=8cm,將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,有一張直角三角形紙片,兩直角邊AC=6cm,BC=9cm,將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則CD等于(  )cm.
A、
25
4
B、
22
3
C、
7
4
D、
5
2

查看答案和解析>>

同步練習(xí)冊答案