已知:等邊△ABC的邊長(zhǎng)為a.
探究(1):如圖1,過等邊△ABC的頂點(diǎn)A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=a;
探究(2):在等邊△ABC內(nèi)取一點(diǎn)O,過點(diǎn)O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點(diǎn)D、E、F.
①如圖2,若點(diǎn)O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質(zhì)得到兩個(gè)正確結(jié)論(不必證明):結(jié)論1. OD+OE+OF=a;結(jié)論2. AD+BE+CF=a;
②如圖3,若點(diǎn)O是等邊△ABC內(nèi)任意一點(diǎn),則上述結(jié)論1,2是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說明理由.

【答案】分析:(1)本題中△ABC為等邊三角形,AB=BC=a,∠ABC=60°,求出∠N,∠G的值,在直角△AMB、△CNB中,可以先用a表示出MB,NB然后再表示出MN,這樣就能證得MN=a;
(2)判定①是否成立可通過構(gòu)建直角三角形,把所求的線段都轉(zhuǎn)化到直角三角形中進(jìn)行求解;
判斷②是否成立,也要通過構(gòu)建直角三角形,可根據(jù)勾股定理,把所求的線段都表示出來,然后經(jīng)過化簡(jiǎn)得出結(jié)論②是否正確.
解答:(1)證明:如圖1,∵△ABC為等邊三角形,
∴∠ABC=60°.
∵BC⊥MN,BA⊥MG,
∴∠CBM=∠BAM=90°.
∴∠ABM=90°-∠ABC=30°.
∴∠M=90°-∠ABM=60°.
同理:∠N=∠G=60°.
∴△MNG為等邊三角形.
在Rt△ABM中,BM=a,
在Rt△BCN中,BN=a,
∴MN=BM+BN=a.

(2)②:結(jié)論1成立.
證明:如圖3,過點(diǎn)O作GH∥BC,分別交AB、AC于點(diǎn)G、H,過點(diǎn)H作HM⊥BC于點(diǎn)M,
∴∠DGO=∠B=60°,∠OHF=∠C=60°,
∴△AGH是等邊三角形,
∴GH=AH.
∵OE⊥BC,
∴OE∥HM,
∴四邊形OEMH是矩形,
∴HM=OE.
在Rt△ODG中,OD=OG•sin∠DGO=OG•sin60°=OG,
在Rt△OFH中,OF=OH•sin∠OHF=OH•sin60°=OH,
在Rt△HMC中,HM=HC•sinC=HC•sin60°=HC,
∴OD+OE+OF=OD+HM+OF=OG+HC+OH
=(GH+HC)=AC=a.

(2)②:結(jié)論2成立.
證明:如圖4,連接OA、OB、OC,根據(jù)勾股定理得:
BE2+OE2=OB2=BD2+OD2①,
CF2+OF2=OC2=CE2+OE2②,
AD2+OD2=AO2=AF2+OF2③,
①+②+③得:BE2+CF2+AD2=BD2+CE2+AF2,
∴BE2+CF2+AD2=(a-AD)2+(a-BE)2+(a-CF)2=a2-2AD•a+AD2+a2-2BE•a+BE2+a2-2CF•a+CF2
整理得:2a(AD+BE+CF)=3a2
∴AD+BE+CF=a.
點(diǎn)評(píng):本題中綜合考查了等邊三角形的判定和性質(zhì),解直角三角形等知識(shí)點(diǎn),由于知識(shí)點(diǎn)比較多,本題的難度比較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:等邊△ABC的邊長(zhǎng)為a.
探究(1):如圖1,過等邊△ABC的頂點(diǎn)A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=
3
a;
探究(2):在等邊△ABC內(nèi)取一點(diǎn)O,過點(diǎn)O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點(diǎn)D、E、F.
①如圖2,若點(diǎn)O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質(zhì)得到兩個(gè)正確結(jié)論(不必證明):結(jié)論1. OD+OE+OF=
3
2
a;結(jié)論2. AD+BE+CF=
3
2
a;
②如圖3,若點(diǎn)O是等邊△ABC內(nèi)任意一點(diǎn),則上述結(jié)論1,2是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,等邊△ABC的邊長(zhǎng)AB=2,則其面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新華區(qū)一模)已知:等邊△ABC的面積為S,Dn,En,F(xiàn)n(n為正整數(shù)0分別是AB,BC,CA邊上的點(diǎn),連接DnEn,EnFn,F(xiàn)nDn,可得△DnEnFn
如圖1,當(dāng)AD1=BE1=CF1=
1
2
AB時(shí),我們?nèi)菀椎玫健鱀1E1F1是等邊三角形,且SAD1F1=S△D1E1F1=
1
4
S.
探究論證:
(1)如圖2,當(dāng)AD2=BE2=CF2=
1
3
AB時(shí),
①△D2E2F2
等邊
等邊
三角形(填寫“等腰”或“等邊”或“不等邊”);
SAD2F2=
2
9
S
2
9
S
S△D2E2F2=
1
3
S
1
3
S
(用含S的代數(shù)式表示);
③請(qǐng)說明以上結(jié)論的正確性.
猜想發(fā)現(xiàn):
(2)如圖3,當(dāng)ADn=BEn=CFn=
1
n+1
AB時(shí),
①△DnEnFn
等邊
等邊
三角形(填寫“等腰”或“等邊”或“不等邊”);
S△ADnFn=
n
(n+1)2
S
n
(n+1)2
S
;S△DnEnFn=
n2-n+1
(n+1)2
S
n2-n+1
(n+1)2
S
(用含S的代數(shù)式表示).
實(shí)際應(yīng)用:
(3)學(xué)校有一塊面積為49m2的等邊△ABC空地,按如圖4所示分割,其中AD6=BE6=CF6=
1
7
AB,計(jì)劃在△D6E6F6內(nèi)栽種花卉,其余地方鋪草坪,則栽種花卉(即陰影部分)的面積為多少m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:等邊△ABC的邊長(zhǎng)為6厘米,長(zhǎng)為1厘米的線段MN在△ABC的邊AB上從點(diǎn)A出發(fā),沿AB方向以1厘米/秒的速度向B點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)開始時(shí),點(diǎn)M與點(diǎn)A重合,點(diǎn)N到達(dá)點(diǎn)B時(shí)運(yùn)動(dòng)終止),過點(diǎn)M、N分別作AB邊的垂線,與△ABC的其它邊交于P、Q兩點(diǎn),線段MN運(yùn)動(dòng)的時(shí)間為x秒.
(1)請(qǐng)寫出線段MN從出發(fā)到終止所需要的時(shí)間t;
(2)線段MN在運(yùn)動(dòng)的過程中,x為何值時(shí),四邊形MNQP恰為矩形?
(3)線段MN在運(yùn)動(dòng)的過程中,設(shè)四邊形MNQP的面積為S,運(yùn)動(dòng)的時(shí)間為x.求四邊形MNQP的面積S隨運(yùn)動(dòng)時(shí)間x變化的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案