【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進(jìn),1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進(jìn)的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:

(1)港口A與小島C之間的距離;
(2)甲輪船后來的速度.

【答案】
(1)

解:作BD⊥AC于點D,如圖所示:

由題意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,

在Rt△ABD中,

∵AB=30海里,∠BAC=30°,

∴BD=15海里,AD=ABcos30°=15 海里,

在Rt△BCD中,

∵BD=15海里,∠BCD=45°,

∴CD=15海里,BC=15 海里,

∴AC=AD+CD=15 +15海里,

即A、C間的距離為(15 +15)海里.


(2)

解:∵AC=15 +15(海里),

輪船乙從A到C的時間為 = +1,

由B到C的時間為 +1﹣1= ,

∵BC=15 海里,

∴輪船甲從B到C的速度為 =5 (海里/小時).


【解析】(1)根據(jù)題意畫出圖形,再根據(jù)平行線的性質(zhì)及直角三角形的性質(zhì)解答即可.(2)根據(jù)甲乙兩輪船從港口A至港口C所用的時間相同,可以求出甲輪船從B到C所用的時間,又知BC間的距離,繼而求出甲輪船后來的速度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組: ,并寫出其整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+ x+ 與x軸交于A,B兩點,與y軸交于點C.若點P是線段AC上方的拋物線上一動點,當(dāng)△ACP的面積取得最大值時,點P的坐標(biāo)是(
A.(4,3)
B.(5,
C.(4,
D.(5,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條公路的轉(zhuǎn)變處是一段圓。磮D中弧CD,點O是弧CD的圓心),其中CD=600米,E為弧CD上一點,且OE⊥CD,垂足為F,OF= 米,則這段彎路的長度為(
A.200π米
B.100π米
C.400π米
D.300π米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點P由B出發(fā)沿BA向點A勻速運(yùn)動,同時點Q由A出發(fā)沿AC向點C勻速運(yùn)動,它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動的時間為t(單位:s)(0≤t≤4).

(1)當(dāng)t為何值時,PQ∥BC.
(2)設(shè)△AQP的面積為S(單位:cm2),當(dāng)t為何值時,S取得最大值,并求出最大值.
(3)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一小島A,它周圍8海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在B點測得小島A在北偏東60°方向上,航行12海里到達(dá)D點,這時測得小島A在北偏東30°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=kx+b,y= ,b、k為整數(shù)且|bk|=1.
(1)討論b,k的取值.
(2)分別畫出兩種函數(shù)的所有圖象.(不需列表)
(3)求y=kx+b與y= 的交點個數(shù).

查看答案和解析>>

同步練習(xí)冊答案