如圖,點(diǎn)P在經(jīng)過點(diǎn)B(0,-2)、C(4,0)的直線上,且縱坐標(biāo)為-1,Q點(diǎn)在y=的圖象上,若PQ∥y軸,求Q點(diǎn)坐標(biāo).

答案:
解析:

  設(shè)過B(0,-2),C(4,0)的直線為y=kx+b,

  ∴

  ∴

  ∴直線BC解析式為y=x-2.

  ∵P點(diǎn)縱坐標(biāo)是-1,

  ∴P點(diǎn)橫坐標(biāo)為2.

  ∵PQ∥y軸,點(diǎn)Q在y=的圖象上,

  ∴Q點(diǎn)坐標(biāo)為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=3,AB=5.點(diǎn)P從點(diǎn)C出發(fā)沿CA以每秒1個單位長的速度向點(diǎn)A勻速運(yùn)動,到達(dá)點(diǎn)A后立刻以原來的速度沿AC返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動.伴隨著P、Q的運(yùn)動,DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB-BC-CP于點(diǎn)E.點(diǎn)P、Q同時出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時停止運(yùn)動,點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動的時間是t秒(t>0).
(1)當(dāng)t=2時,AP=
 
,點(diǎn)Q到AC的距離是
 
;
(2)在點(diǎn)P從C向A運(yùn)動的過程中,求△APQ的面積S與t的函數(shù)關(guān)系式;(不必寫出t的取值范圍)
(3)在點(diǎn)E從B向C運(yùn)動的過程中,四邊形QBED能否成為直角梯形?若能,求t的值;若不能,請說明理由精英家教網(wǎng);
(4)當(dāng)DE經(jīng)過點(diǎn)C時,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖1,圓O1與圓O2都經(jīng)過A、B兩點(diǎn),經(jīng)過點(diǎn)A的直線線CD與圓O1交于點(diǎn)C,與圓O2交于點(diǎn)D.經(jīng)過點(diǎn)B的直線EF與圓O1交于點(diǎn)E,與圓O2交于點(diǎn)F.

(1)求證:CE∥DF;
(2)在圖1中,若CD和EF可以分別繞點(diǎn)A和點(diǎn)B轉(zhuǎn)動,當(dāng)點(diǎn)C與點(diǎn)E重合時(如圖2),過點(diǎn)E作直線MN∥DF,試判斷直線MN與圓O1的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)C的坐標(biāo)是(0,2),點(diǎn)B是直線x=4上的一個動點(diǎn),并且精英家教網(wǎng)在第一象限內(nèi),AC、BO交于點(diǎn)M,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)B、C、M.
(1)求直線AC的函數(shù)表達(dá)式;
(2)如果AB<OC,求拋物線頂點(diǎn)的橫坐標(biāo)的范圍;
(3)你認(rèn)為點(diǎn)M在拋物線y=ax2+bx+c上位置有何特殊之處?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過點(diǎn)C,交y軸于點(diǎn)G,且∠AGO=30°。
(1)點(diǎn)C、D的坐標(biāo)分別是C(       ),D(       );
(2)求頂點(diǎn)在直線y=上且經(jīng)過點(diǎn)C、D的拋物線的解析式;
(3)將(2)中的拋物線沿直線y=平移,平移后的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E。平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請求出此時拋物線的解析式;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省義蓬片九年級第一學(xué)期第一階段考試數(shù)學(xué)卷 題型:解答題

 (本題12分) 如圖,在平面直角坐標(biāo)系xoy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=,直線y=經(jīng)過點(diǎn)C,交y軸于點(diǎn)G,且∠AGO=30°。

(1)點(diǎn)C、D的坐標(biāo)分別是C(        ),D(        );

(2)求頂點(diǎn)在直線y=上且經(jīng)過點(diǎn)C、D的拋物線的解析式;

(3)將(2)中的拋物線沿直線y=平移,平移后的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E。平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請求出此時拋物線的解析式;若不存在,請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案