如圖,已知△ABC是等腰直角三角形,∠C=90°

(1)操作并觀察,如圖,將三角板的45°角的頂點(diǎn)與點(diǎn)C重合,使這個(gè)角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點(diǎn),然后將這個(gè)角繞著點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點(diǎn)E、F的位置發(fā)生變化時(shí),AE、EF、FB中最長(zhǎng)線段是否始終是EF?試寫出觀察結(jié)果.

(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形(即能否有EF2=AE2+BF2)?如果能,試加以證明.

答案:
解析:

  解析:操作、觀察不是重點(diǎn),探索、猜測(cè)才是整個(gè)題目的重點(diǎn),是難點(diǎn),也就是說,從操作中獲取信息是探索問題的過程中最重要的.

  (1)中只需在旋轉(zhuǎn)∠ECF的過程中用刻度尺量一量或觀察,即可得到.

  (2)要判斷EF2=AE2+BF2,思路是把AE、EF、FB搬到一個(gè)三角形中,通常用平移、翻折、旋轉(zhuǎn)等方法,本題目利用翻折的方法較簡(jiǎn)單,使得線段AE、BF相等的線段和EF在出現(xiàn)一個(gè)三角形中.

  解:(1)觀察結(jié)果是:當(dāng)45°角的頂點(diǎn)與點(diǎn)C重合,并將這個(gè)角繞著點(diǎn)C在△ABC內(nèi)部旋轉(zhuǎn)時(shí),AE、EF、FB中最長(zhǎng)的線段始終是EF.

  (2)AE、EF、FB三條線段能構(gòu)成以EF為斜邊的直角三角形,證明如下:

  如圖所示,在∠ECF的內(nèi)部作∠ECG=∠ACE,

  使CG=AC,連結(jié)EG,F(xiàn)G,

  ∴△ACE≌△GCE,

  ∴∠A=∠1,同理∠B=∠2,

  ∵∠A+∠B=90°,

  ∴∠1+∠2=90°,

  ∴∠BGF=90°,EF為斜邊.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是邊長(zhǎng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A精英家教網(wǎng)的坐標(biāo)為(-1,0).
(1)寫出B,C,D三點(diǎn)的坐標(biāo);
(2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點(diǎn),求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長(zhǎng)線上一點(diǎn),選擇一點(diǎn)D,使得△CDE是等邊三角形,如果M是線段AD的中點(diǎn),N是線段BE的中點(diǎn),
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點(diǎn)D是BC延長(zhǎng)線上的一個(gè)動(dòng)點(diǎn),以AD為邊作等邊△ADE,過點(diǎn)E作BC的平行線,分別交AB,AC的延長(zhǎng)線于點(diǎn)F,G,聯(lián)結(jié)BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案