如圖,在菱形ABCD中,E、F分別是AC、CD的中點,若EF的長是2cm,則菱形ABCD的周長是   _cm.
16

試題分析:先根據(jù)三角形的中位線定理求得AD的長,再根據(jù)菱形的性質(zhì)求解即可.
∵E、F分別是AC、CD的中點,EF=2cm
∴AD=4cm
∴菱形ABCD的周長是16cm.
點評:解題的關鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將一平行四邊形紙片ABCD沿AE,EF折疊,使點E,B′,C′在同一直線上,則∠AEF=     度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖,矩形ABCD中,點E是BC上一點,AE=AD,DF⊥AE于F.求證:DF=DC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,?ABCD中,對角線AC與BD相交于點E,∠AEB=450,BD=2,將△ABC沿AC所在直線翻折180°到其原來所在的同一平面內(nèi),若點B的落點記為B′,則DB′的長為     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,平行四邊形ABCD的周長是18cm,對角線AC、BD相交于點O,若△AOD與△AOB的周長差是5cm,則邊AB的長是 _________ cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某高中學校為高一新生設計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質(zhì)及其厚度等暫忽略不計).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,防洪大堤的橫斷面是梯形ABCD,其中AD∥BC,坡角α=600,汛期來臨前對其進行了加固,改造后的背水面坡角β=450,若原坡長AB=20m,求改造后的坡長AE(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

如圖,E是矩形ABCE的邊BC上一點,EF⊥AE,EF分別交AC、CD于點M、F,BG⊥AC,垂足為G,BG交AE于點H。

(1)求證:△ABE∽△ECF;
(2)找出與△ABH相似的三角形,并證明;
(3)若E是BC中點,BC=2AB,AB=2,求EM的長。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

四邊形ABCD對角線交點是O,下列條件中,不能判定四邊形ABCD是平行四邊形的是(     )     
A.AD∥BC,AD=BCB.AB=DC,AD=BC
C.AB∥DC,AD=BCD.OA=OC,OD=OB

查看答案和解析>>

同步練習冊答案