【題目】如圖,已知∠1=∠2,∠3=∠4,∠5=∠6,試判斷ED與FB的位置關(guān)系,并說(shuō)明為什么.

【答案】BF、DE互相平行

【解析】試題分析:設(shè)ABDE相交于H,由∠3=∠4,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可證得BD∥CF,可得到∠5=∠BAF;已知∠5=∠6即可得∠BAF=∠6,根據(jù)同位角相等,兩直線平行可得AB∥CD根據(jù)平行線的性質(zhì)可得∠2=∠EHA,由此可得到∠1=∠EHA,根據(jù)同位角相等,兩直線平行即可判斷BF∥DE

試題解析:

BF、DE互相平行;

理由:如圖;

∵∠3=∠4

∴BD∥CF,

∴∠5=∠BAF

∵∠5=∠6,

∴∠BAF=∠6

∴AB∥CD,

∴∠2=∠EHA

∵∠1=∠2,即∠1=∠EHA,

∴BF∥DE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解關(guān)于x的一元二次方程ax2+bx+c=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知CD是經(jīng)過(guò)BCA頂點(diǎn)C的一條直線,CA=CBE、F分別是直線CD上兩點(diǎn),且BEC=CFA=

(1)若直線CD經(jīng)過(guò)BCA的內(nèi)部,且E、F在射線CD上,請(qǐng)解決下面問(wèn)題:

如圖1BCA=90°,=90°、探索三條線段EF、BEAF的數(shù)量關(guān)系并證明你的結(jié)論.

如圖2,若BCA180° 請(qǐng)?zhí)砑右粋(gè)關(guān)于BCA關(guān)系的條件___ ____使中的結(jié)論仍然成立;

(2)如圖3,若直線CD經(jīng)過(guò)BCA的外部,=BCA,請(qǐng)寫出三條線段EF、BE、AF的數(shù)量關(guān)系并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,,點(diǎn)D是邊AB上一點(diǎn),EAC的中點(diǎn),過(guò)點(diǎn)CCFAB, DE的延長(zhǎng)線于點(diǎn)F。

(1)求證:DE=FE;

(2)CD=CF,∠A=40°,求∠BCD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點(diǎn)G在對(duì)角線BD上,GECD,GFBC,AD=1500m,小敏行走的路線為BAGE,小聰行走的路線為BADEF.若小敏行走的路程為3100m,則小聰行走的路程為 m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線ABCD

(1)如圖1,點(diǎn)E在直線BD的左側(cè),猜想∠ABE、CDE、BED的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖2,點(diǎn)E在直線BD的左側(cè),BF、DF分別平分∠ABE、CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)如圖3,點(diǎn)E在直線BD的右側(cè),BF、DF分別平分∠ABE、CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)寫出你的猜想,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)零件的形狀如圖所示,工人師傅按規(guī)定做得∠B=90°,

AB3BC4,CD12AD13,假如這是一塊鋼板,你能幫工人師傅計(jì)算一下這塊鋼板的面積嗎?

【答案】面積等于36

【解析】試題分析:利用勾股定理求AC,再利用勾股定理逆定理求∠ACB=90°,分別求的面積.

試題解析:

B=90°,AB3,BC4,AC=

=169,

所以∠ACD=90°,

.

所以面積是36.

型】解答
結(jié)束】
22

【題目】如圖,在所給正方形網(wǎng)格(每個(gè)小網(wǎng)格的邊長(zhǎng)是1)圖中完成下列各題.

1)格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)的面積=_________;

2)畫出格點(diǎn)△ABC關(guān)于直線DE對(duì)稱的△A1B1C1

3)在DE上畫出點(diǎn)P,使PB+PC最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在所給正方形網(wǎng)格(每個(gè)小網(wǎng)格的邊長(zhǎng)是1)圖中完成下列各題.

1)格點(diǎn)△ABC(頂點(diǎn)均在格點(diǎn)上)的面積=_________;

2)畫出格點(diǎn)△ABC關(guān)于直線DE對(duì)稱的△A1B1C1;

3)在DE上畫出點(diǎn)P,使PB+PC最小,并求出這個(gè)最小值.

【答案】1)面積等于52圖形見解析3)最小值是根號(hào)17

【解析】試題分析:(1)利用勾股定理求出三角形邊長(zhǎng),并證明是直角三角形求面積.(2)畫出A,B,C的對(duì)稱點(diǎn)A1,B2,C3,連接三角形.(3)利用對(duì)稱利用兩點(diǎn)之間直線最短求最小值.

試題解析:

1分別利用勾股定理求得AC=2,AB=,BC=, ,所以∠ACB=90°面積等于=5.

2)畫出A,B,C的對(duì)稱點(diǎn)A1,B2,C3,連接三角形.如下圖.

3)作B點(diǎn)對(duì)稱B’,連接B’CDEP,B’P+PC=BP+CP,所以使PB+PC最小.

利用勾股定理B’C=,

所以最小值是根號(hào)17.

點(diǎn)睛:平面上最短路徑問(wèn)題

(1)歸于“兩點(diǎn)之間的連線中,線段最短”.凡屬于求“變動(dòng)的兩線段之和的最小值”時(shí),大都應(yīng)用這一模型.

(2)歸于“三角形兩邊之差小于第三邊”.凡屬于求“變動(dòng)的兩線段之差的最大值”時(shí),大都應(yīng)用這一模型.

(3)平面圖形中,直線同側(cè)兩點(diǎn)到直線上一點(diǎn)距離之和最短問(wèn)題.

型】解答
結(jié)束】
23

【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過(guò)點(diǎn)A(2,3)

(1)求k的值;

(2)判斷點(diǎn)B(-1,8),C(3,1)是否在這個(gè)函數(shù)的圖像上,并說(shuō)明理由;

(3)當(dāng)-3<x<-1時(shí),求y的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組: .請(qǐng)結(jié)合題意填空,完成本體的解法.

(1)解不等式(1),得________;

(2)解不等式(2),得________;

(3)把不等式 (1)和 (2)的解集在數(shù)軸上表示出來(lái).

(4)原不等式的解集為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案