【題目】解不等式組: .請(qǐng)結(jié)合題意填空,完成本體的解法.

(1)解不等式(1),得________;

(2)解不等式(2),得________;

(3)把不等式 (1)和 (2)的解集在數(shù)軸上表示出來.

(4)原不等式的解集為________.

【答案】(1)x<5;(2)x≥2;(3)見解析;(4)2≤x<5

【解析】試題分析:(1)先去括號(hào)再移項(xiàng),合并同類項(xiàng),x的系數(shù)化為1即可;

2)先移項(xiàng)合并同類項(xiàng),x的系數(shù)化為1即可;

3)把兩個(gè)不等式的解集在數(shù)軸上表示出來即可

4)寫出兩個(gè)不等式的公共解集即可

試題解析:(1)去括號(hào)得,53x﹣12+2,移項(xiàng)得5+12﹣23x,合并同類項(xiàng)得,153xx的系數(shù)化為1,x5

故答案為:x5;

2)移項(xiàng)得,2x≥1+3合并同類項(xiàng)得,2x≥4,x的系數(shù)化為1,x≥2

故答案為:x≥2;

3)把不等式1)和2)的解集在數(shù)軸上表示為

4)由(3)得,原不等式的解集為2≤x5

故答案為:2≤x5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,∠3=∠4,∠5=∠6,試判斷ED與FB的位置關(guān)系,并說明為什么.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)資源節(jié)約型、環(huán)境友好型社會(huì),克服因干旱而造成的電力緊張困難,切實(shí)做好節(jié)能減排工作.某地決定對(duì)居民家庭用電實(shí)行“階梯電價(jià)”,電力公司規(guī)定:居民家庭每月用電量在80千瓦時(shí)以下(80千瓦時(shí),1千瓦時(shí)俗稱1)時(shí),實(shí)行“基本電價(jià)”;當(dāng)居民家庭月用電量超過80千瓦時(shí)時(shí),超過部分實(shí)行“提高電價(jià)”.

(1)小張家今年2月份用電100千瓦時(shí),上繳電費(fèi)68元;5月份用電120千瓦時(shí),上繳電費(fèi)88元.求“基本電價(jià)”和“提高電價(jià)”分別為多少元/千瓦時(shí);

(2)6月份小張家預(yù)計(jì)用電130千瓦時(shí),請(qǐng)預(yù)算小張家6月份應(yīng)上繳的電費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=3,BC=4,點(diǎn)DAB的中點(diǎn),點(diǎn)EDC的延長線上,且CE=CD,過點(diǎn)BBFDEAE的延長線于點(diǎn)F,交AC的延長線于點(diǎn)G

1)求證:AB=BG;

2)若點(diǎn)P是直線BG上的一點(diǎn),試確定點(diǎn)P的位置,使BCPBCD相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長交BC的延長線于點(diǎn)G。

(1)求證:ABE∽△DEF;

(2)若正方形的邊長為4,求BG的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,ACBDCE均為等邊三角形,當(dāng)DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線上,連接BE.

填空:① AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關(guān)系是______

(2)拓展研究:

如圖2,ACBDCE均為等腰三角形,且∠ACB=DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.

(3)探究發(fā)現(xiàn):

1中的ACBDCE,在DCE旋轉(zhuǎn)過程中當(dāng)點(diǎn)A,D,E不在同一直線上時(shí),設(shè)直線ADBE相交于點(diǎn)O,試在備用圖中探索∠AOE的度數(shù),直接寫出結(jié)果,不必說明理由.

【答案】160°AD=BE;(2AB=17;(3AOE的度數(shù)是60°120°

【解析】試題分析:1)由條件易證ACD≌△BCE,從而得到:AD=BE,ADC=BEC.由點(diǎn)AD,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).

2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由DCE為等腰直角三角形及CMDCEDE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE

3)由(1)知ACD≌△BCE,得∠CAD=CBE,由∠CAB=ABC=60°,可知∠EAB+ABE=120°,根據(jù)三角形的內(nèi)角和定理可知∠AOE=60°

試題解析:1ACBDCE均為等邊三角形,

CA=CB,CD=CEACB=DCE=60°.

∴∠ACD=BCE.

ACDBCE中,

,

ACDBCE(SAS).

∴∠ADC=BEC.

DCE為等邊三角形,

∴∠CDE=CED=60°.

∵點(diǎn)A,D,E在同一直線上,

∴∠ADC=120°.

∴∠BEC=120°.

∴∠AEB=BECCED=60°.

故答案為:60°.

②∵ACDBCE

AD=BE.

故答案為:AD=BE.

2ACBDCE均為等腰直角三角形,

CA=CB,CD=CEACB=DCE=90°.

∴∠ACD=BCE.

ACDBCE中,

,

ACDBCE(SAS).

AD=BE=AE-DE=8ADC=BEC,

DCE為等腰直角三角形,

∴∠CDE=CED=45°.

∵點(diǎn)AD,E在同一直線上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=BECCED=90°.

AB==17;

31ACDBCE,

∴∠CAD=CBE,

∵∠CAB=CBA=60°

∴∠OAB+OBA=120°

∴∠AOE=180°120°=60°,

同理求得∠AOB=60°,

∴∠AOE=120°

∴∠AOE的度數(shù)是60°120°.

點(diǎn)睛:本題考查了等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形全等的判定與性質(zhì)等知識(shí),考查了運(yùn)用已有的知識(shí)和經(jīng)驗(yàn)解決問題的能力.

型】解答
結(jié)束】
26

【題目】如圖,直線MNy=-xbx軸交于點(diǎn)M4,0),與y軸交于點(diǎn)N,長方形ABCD的邊ABx軸上,AB2AD1.長方形ABCD由點(diǎn)A與點(diǎn)O重合的位置開始,以每秒1個(gè)單位長度的速度沿x軸正方向作勻速直線運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)M重合時(shí)停止運(yùn)動(dòng).設(shè)長方形運(yùn)動(dòng)的時(shí)間為t秒,長方形ABCD與△OMN重合部分的面積為S

1)求直線MN的解析式;

2)當(dāng)t1時(shí),請(qǐng)判斷點(diǎn)C是否在直線MN上,并說明理由;

3)請(qǐng)求出當(dāng)t為何值時(shí),點(diǎn)D在直線MN上;

4)直接寫出在整個(gè)運(yùn)動(dòng)過程中St的函數(shù)關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC會(huì)平行嗎?說明理由

(2)ADBC的位置關(guān)系如何?為什么?

(3)BC平分∠DBE?為什么

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣3,﹣2,﹣1,0,1,3,4這七個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù)記為a,a的值既是不等式組 的解,又在函數(shù)y= 的自變量取值范圍內(nèi)的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017 D2017的邊長是(
A.( 2016
B.( 2017
C.( 2016
D.( 2017

查看答案和解析>>

同步練習(xí)冊(cè)答案