【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).ABC的邊BCx軸上,A、C兩點(diǎn)的坐標(biāo)分別為A0,m)、Cn,0),B(﹣5,0),且,點(diǎn)PB出發(fā),以每秒2個(gè)單位的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

1)求A、C兩點(diǎn)的坐標(biāo);

2)連接PA,用含t的代數(shù)式表示POA的面積;

3)當(dāng)P在線段BO上運(yùn)動(dòng)時(shí),是否存在一點(diǎn)P,使PAC是等腰三角形?若存在,請(qǐng)寫出滿足條件的所有P點(diǎn)的坐標(biāo)并求t的值;若不存在,請(qǐng)說(shuō)明理由。

【答案】1)A的坐標(biāo)是,的坐標(biāo)是;(2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;(3)存在一點(diǎn)、、相對(duì)應(yīng)的時(shí)間分別是、1.5、使是等腰三角形.

【解析】

1)根據(jù)偶次方和算術(shù)平方根的非負(fù)性得出,,求出即可;

2)分為三種情況:當(dāng)時(shí),在線段上,②當(dāng)時(shí),重合,③當(dāng)時(shí),在射線上,求出,根據(jù)三角形的面積公式求出即可;

3)分為三種情況:①為頂角時(shí),找出腰長(zhǎng)關(guān)系便可解;②為頂角時(shí),找出腰長(zhǎng)關(guān)系便可解;③為頂角時(shí),根據(jù)勾股定理可求得.

解:(1,

,,

,

的坐標(biāo)是,的坐標(biāo)是

2,

,

①當(dāng)時(shí),在線段上,如圖1,

,,

的面積;

②當(dāng)時(shí),重合,此時(shí)不存在,即;

③當(dāng)時(shí),在射線上,如備用圖2

,,

的面積;

3在線段上運(yùn)動(dòng)使是等腰三角形,分三種情況,

為頂角時(shí),即,

中垂線,

,

點(diǎn)坐標(biāo)為,.

;

為頂角時(shí),

根據(jù)勾股定理可得,,

POB上,

點(diǎn)坐標(biāo)為,

;

為頂角時(shí),,設(shè),

根據(jù)勾股定理,在中,

解得

,

點(diǎn)坐標(biāo)為,,

;

綜上,存在一點(diǎn)、,相對(duì)應(yīng)的時(shí)間分別是1.5、使是等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,ABC為等腰直角三角形, ABD為等邊三角形,連接CD.

1)求∠ACD的度數(shù);

2)如圖①,作∠BAC的平分線交CD于點(diǎn)E,求證:DE=AE+CE;

3)如圖②,在(2)的條件下,M為線段BC右側(cè)一點(diǎn),滿足∠CMB=60°,求證:ME平分∠CMB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系。

(1)如圖a,若AB∥CD,點(diǎn)PAB、CD外部,則有B=BOD,又因BOD是△POD的外角,故BOD=BPD +D,得BPD=B-D。將點(diǎn)P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說(shuō)明理由;若不成立,則BPD、B、D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;

2)在圖b中,將直線AB繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖c,則BPD﹑B﹑D﹑BQD之間有何數(shù)量關(guān)系? (不需證明);

(3)根據(jù)(2)的結(jié)論求圖dA+B+C+D+E+F的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某建筑物BC的高度,小明先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了10m到達(dá)D處,此時(shí)遇到一斜坡,坡度i=1:,沿著斜坡前進(jìn)10米到達(dá)E處測(cè)得建筑物頂部的仰角是45°,請(qǐng)求出該建筑物BC的高度為(  )(結(jié)果可帶根號(hào))

A. 5+5 B. 5+5 C. 5+10 D. 5+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長(zhǎng)線于⊙O的切線AF交于點(diǎn)F.

(1)求證:∠ABC=2∠CAF;

(2)若AC=2,CE:EB=1:4,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無(wú)滑動(dòng)滾動(dòng),每旋轉(zhuǎn)60°為滾動(dòng)1次,那么當(dāng)正六邊形ABCDEF滾動(dòng)2017次時(shí),點(diǎn)F的坐標(biāo)是( 。

A. (2017,0) B. (2017, C. (2018, D. (2018,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C=90°,AD平分∠BAC,DEAB于點(diǎn)E,有下列結(jié)論:CD=ED ;②AC+ BE= AB ;③DA平分∠CDE ;④∠BDE =BAC;⑤=AB:AC.其中結(jié)論正確的個(gè)數(shù)有()

A.5個(gè)B.4個(gè)

C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ACB90,ACBC,ADCE,BECE,垂足分別為D、E

1)求證:△ACD≌△CBE;

2)已知AD5,DE3,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在xOy中,已知點(diǎn)A(a1,a+b),B(a,0),且0,Cx軸上B點(diǎn)右側(cè)的動(dòng)點(diǎn),以AC為腰作等腰△ACD,使ADAC,∠CAD=∠OAB,DBy軸于點(diǎn)P

(1)A、B兩點(diǎn)坐標(biāo);

(2)求證:AOAB

(3)求證:∠OBP=∠OAB

查看答案和解析>>

同步練習(xí)冊(cè)答案