【題目】平面內的兩條直線有相交和平行兩種位置關系。
(1)如圖a,若AB∥CD,點P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D。將點P移到AB、CD內部,如圖b,以上結論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關系?請證明你的結論;
(2)在圖b中,將直線AB繞點B逆時針方向旋轉一定角度交直線CD于點Q,如圖c,則∠BPD﹑∠B﹑∠D﹑∠BQD之間有何數(shù)量關系? (不需證明);
(3)根據(jù)(2)的結論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)。
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖, AB是⊙O的直徑,AM和BN是⊙O的兩條切線,點D是AM上一點,聯(lián)結OD , 作BE∥OD交⊙O于點E, 聯(lián)結DE并延長交BN于點C.
(1)求證:DC是⊙O的切線;
(2)若AD=l,BC=4,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在世界經(jīng)濟的影響下,國家采取擴大內需的政策,基建投資成為拉動內需最強有力的引擎,金強公司中標一項工程,在甲、乙兩地施工,其中甲地需推土機30臺,乙地需推土機26臺,公司在A、B兩地分別庫存推土機32臺和24臺,現(xiàn)從A地運一臺到甲、乙兩地的費用分別是400元和300元.從B地運一臺到甲、乙兩地的費用分別為200元和500元,設從A地運往甲地x臺推土機,運這批推土機的總費用為y元.
(1)根據(jù)題意,可將庫存地和施工地之間推土機的運輸數(shù)量列表如下:
甲地(臺) | 乙地(臺) | 合計 | |
A地 | x | A地庫存:32 (臺) | |
B地 | B地庫存:24 (臺) | ||
合計 | 甲地需求:30 (臺) | 乙地需求:26 (臺) | 總計:56 (臺) |
(2)求y與x的函數(shù)關系式;
(3)當x取何值時,能使運送這批推土機的總費用最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖表示一個正比例函數(shù)與一個一次函數(shù)的圖象,它們交于點A(3,4),一次函數(shù)的圖象與y軸交于點B,且OA=0B
(1)求這兩個函數(shù)的關系式;
(2)兩直線與x軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:
(1)求證:CD是⊙O的切線;
(2)若BC=3,CD=4,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學的趣味無處不在,在學習數(shù)學的過程中,小明發(fā)現(xiàn)了有規(guī)律的等式:
;
;
;
;
……
(1)從計算過程中找出規(guī)律,可知:
① ;
② =.
(2)計算:(結果用含n的式子表示)
(3)對于算式:
①計算出算式的值(結果用乘方表示);
②直接寫出結果的個位數(shù)字是幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點.△ABC的邊BC在x軸上,A、C兩點的坐標分別為A(0,m)、C(n,0),B(﹣5,0),且,點P從B出發(fā),以每秒2個單位的速度沿射線BO勻速運動,設點P運動時間為t秒.
(1)求A、C兩點的坐標;
(2)連接PA,用含t的代數(shù)式表示△POA的面積;
(3)當P在線段BO上運動時,是否存在一點P,使△PAC是等腰三角形?若存在,請寫出滿足條件的所有P點的坐標并求t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸交于點,,與軸交于點,直線經(jīng)過,兩點.
求拋物線的解析式;
在上方的拋物線上有一動點.
①如圖,當點運動到某位置時,以,為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點的坐標;
②如圖,過點,的直線交于點,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com