【題目】在⊙O 中,點C是上的一個動點(不與點A,B重合),∠ACB=120°,點I是∠ABC的內(nèi)心,CI的延長線交⊙O于點D,連結(jié)AD,BD.
(1)求證:AD=BD.
(2)猜想線段AB與DI的數(shù)量關(guān)系,并說明理由.
(3)若⊙O的半徑為2,點E,F(xiàn)是的三等分點,當(dāng)點C從點E運動到點F時,求點I隨之運動形成的路徑長.
【答案】(1)證明見解析;(2)AB=DI,理由見解析(3)
【解析】(1)根據(jù)內(nèi)心的定義可得CI平分∠ACB,可得出角相等,再根據(jù)圓周角定理,可證得結(jié)論;
(2)根據(jù)∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度數(shù),再根據(jù)AD=BD,可證得△ABD是等邊三角形,再根據(jù)內(nèi)心的定義及三角形的外角性質(zhì),證明∠BID=∠IBD,得出ID=BD,再根據(jù)AB=BD,即可證得結(jié)論;
(3)連接DO,延長DO根據(jù)題意可知點I隨之運動形成的圖形式以D為圓心,DI1為半徑的弧,根據(jù)已知及圓周角定理、解直角三角形,可求出AD的長,再根據(jù)點E,F(xiàn)是 弧AB 的三等分點,△ABD是等邊三角形,可證得∠DAI1=∠AI1D,然后利用弧長的公式可求出點I隨之運動形成的路徑長.
(1)證明:∵點I是∠ABC的內(nèi)心
∴CI平分∠ACB
∴∠ACD=∠BCD
∴弧AD=弧BD
∴AD=BD
(2)AB=DI
理由:∵∠ACB=120°,∠ACD=∠BCD
∴∠BCD=×120°=60°
∵弧BD=弧BD
∴∠DAB=∠BCD=60°
∵AD=BD
∴△ABD是等邊三角形,
∴AB=BD,∠ABD=∠C
∵I是△ABC的內(nèi)心
∴BI平分∠ABC
∴∠CBI=∠ABI
∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD
∴∠BID=∠IBD
∴ID=BD
∵AB=BD
∴AB=DI
(3)解:如圖,連接DO,延長DO根據(jù)題意可知點I隨之運動形成的圖形式以D為圓心,DI1為半徑的弧
∵∠ACB=120°,弧AD=弧BD
∴∠AED=∠ACB=×120°=60°
∵圓的半徑為2,DE是直徑
∴DE=4,∠EAD=90°
∴AD=sin∠AED×DE=×4=2
∵點E,F(xiàn)是 弧AB 的三等分點,△ABD是等邊三角形,
∴∠ADB=60°
∴弧AB的度數(shù)為120°,
∴弧AM、弧BF的度數(shù)都為為40°
∴∠ADM=20°=∠FAB
∴∠DAI1=∠FAB+∠DAB=80°
∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°
∴∠DAI1=∠AI1D
∴AD=I1D=2
∴弧I1I2的長為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個不相等的實數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若=﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在前面的學(xué)習(xí)中,我們通過對同一面積的不同表達和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式.這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.
請你利用上述方法解決下列問題:
(1)請寫出圖1和圖2所表示的代數(shù)恒等式
_______ _______
(2)現(xiàn)有a×a,b×b的正方形紙片和a×b的矩形紙片各若干塊,試選用這些紙片(每種紙片至少用一次,每兩個紙片之間既不重疊,也無空隙,拼出的圖形中必須保留拼圖的痕跡),使拼出的矩形面積為為2a2+5ab+2b2,并標(biāo)出此矩形的長和寬.
(拓展應(yīng)用)
提出問題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形上面.
(2)原矩形面積可以有兩種不同的表達方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,47×43=(40+10)×40+3×7=5×4×100+3×7=2021,
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構(gòu)成運算結(jié)果.
歸納提煉:
兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)_________.
證明上述速算方法的正確性;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔(dān)一項筑路任務(wù),甲隊單獨施工完成此項任務(wù)比乙隊單獨施工完成此項任務(wù)多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項任務(wù)各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設(shè)備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若點P為四邊形ABCD內(nèi)一點,且滿足∠APB+∠CPD=180°, 則稱點P為四邊形ABCD的一個“互補點”.
(1)如圖1,點P為四邊形ABCD的一個“互補點”,∠APD=63°,求∠BPC的度數(shù).
(2)如圖2,點P是菱形ABCD對角線上的任意一點.求證:點P為菱形ABCD的一個“互補點”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,點在邊上,且,將沿對折至,延長交邊于點,連接、.則下列結(jié)論:①≌;②;③∥;④.其中正確的是( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,兩點在數(shù)軸上,點表示的數(shù)為-10,點到點的距離是點到點距離的3倍,點以每秒3個單位長度的速度從點向右運動.點以每秒2個單位長度的速度從點向右運動(點、同時出發(fā))
(1)數(shù)軸上點對應(yīng)的數(shù)是______.
(2)經(jīng)過幾秒,點、點分別到原點的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=x2-2x-3與x軸相交于點A,B(點A在B的左側(cè)),與y軸相交于點C,直線y2=kx+b經(jīng)過點B,C.
(1)求直線BC的函數(shù)關(guān)系式;
(2)當(dāng)y1>y2時,請直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某慈善組織租用甲、乙兩種貨車共輛,把蔬菜噸,水果噸,全部運到災(zāi)區(qū)已知輛甲種貨車同時可裝蔬菜噸,水果噸;一輛乙種貨車同時可裝蔬菜噸,水果噸.
(1)若將這批貨物一次性運到災(zāi)區(qū),請寫出具體的租車方案?
(2)若甲種貨車每輛需付燃油費元,乙種貨車每輛需付燃油費元,則應(yīng)選(1)種的哪種方案,才能使所付的燃油費最少?最少的燃油費是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com