【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的負(fù)半軸于點(diǎn).點(diǎn)軸正半軸上一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)恰好落在拋物線上.過點(diǎn)軸的平行線交拋物線于另一點(diǎn).若點(diǎn)的橫坐標(biāo)為,則的長為________.

【答案】3

【解析】

解方程x2+mx=0A-m0),再利用對稱的性質(zhì)得到點(diǎn)A的坐標(biāo)為(-1,0),所以拋物線解析式為y=x2+x,再計(jì)算自變量為1的函數(shù)值得到A′12),接著利用C點(diǎn)的縱坐標(biāo)為2求出C點(diǎn)的橫坐標(biāo),然后計(jì)算A′C的長.

當(dāng)y=0時,x2+mx=0,解得x1=0x2=-m,則A-m,0),

∵點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn)為A′,點(diǎn)A′的橫坐標(biāo)為1,

∴點(diǎn)A的坐標(biāo)為(-10),

∴拋物線解析式為y=x2+x

當(dāng)x=1時,y=x2+x=2,則A′1,2),

當(dāng)y=2時,x2+x=2,解得x1=-2,x2=1,則C-2,2),

A′C的長為1--2=3

故答案為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了研究某藥品的療效,現(xiàn)選取若干名志愿者進(jìn)行臨床試驗(yàn).所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組、第二組、、第五組.如圖是根據(jù)試驗(yàn)數(shù)據(jù)制成的頻率分布直方圖.

(1)若第一組接受治療的志愿者有12人,則第三組接受治療的志愿者有多少人?

(2)若接受治療的志愿者共有50人,規(guī)定舒張壓在14kpa以上的志愿者接受進(jìn)一步的臨床試驗(yàn),若從三組志愿者中按比例分配20張床位,則舒張壓數(shù)據(jù)在[14,15)的志愿者總共可以得到多少張床位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=24AC=18,DAC上一點(diǎn),AD=6,在AB上取一點(diǎn)E,使AD、E三點(diǎn)組成的三角形與△ABC相似,則AE的長為( )

A.8B.C.8D.89

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3

1)將△ABC向右平移6個單位至△A1B1C1,再將△A1B1C1繞點(diǎn)E5,1)逆時針旋轉(zhuǎn)90°至△A2B2C2,請按要求畫出圖形;

2)在(1)的變換過程中,直接寫出點(diǎn)C的運(yùn)動路徑長   

3)△A2B2C2可看成△ABC繞某點(diǎn)P旋轉(zhuǎn)90°得到的,則點(diǎn)P的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖像如圖,對稱軸為直線,則下列敘述正確的是( 。

A.ac>0B.b2<4acC.b=2aD.a+b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司推銷一種產(chǎn)品,公司付給推銷員的月報酬有兩種方案如圖所示:方案一所示圖形是頂點(diǎn)在原點(diǎn)的拋物線的一部分,方案二所示圖形是射線.其中(件)表示推銷員推銷產(chǎn)品的數(shù)量,(元)表示付給推銷員的月報酬.

1)分別求兩種方案中關(guān)于的函數(shù)關(guān)系式;

2)當(dāng)推銷員推銷產(chǎn)品的數(shù)量達(dá)到多少件時,兩種方案月報酬差額將達(dá)到元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人五一放假期間去登盤山掛月峰,甲先開車沿小路開到了距離登山入口100米的地方后,開始以10/分鐘的登山上升速度徒步登山;甲開始徒步登山同時,乙直接從登山入口開始徒步登山,起初乙以15/分鐘的登山上升速度登山,兩分鐘后得知甲已經(jīng)在半山腰,于是乙以甲登山上升速度的3倍提速.兩人相約只登到距地面高度為300米的地方,設(shè)兩人徒步登山時間為(分鐘)

(Ⅰ)根據(jù)題意,填寫下表:

徒步登山時間/時間

2

3

4

5

甲距地面高度/

120

______

140

______

乙距地面高度/

30

60

______

______

(Ⅱ)請分別求出甲、乙兩人徒步登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式;

(Ⅲ)登山多長時間時,甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是直角邊長為1cm的等腰直角三角形,動點(diǎn)PQ同時從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,P、Q兩點(diǎn)停止運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為ts),解答下列各問題:

1)當(dāng)t為何值時,△PBQ是直角三角形?

2)設(shè)四邊形APQC的面積為ycm2),求yt的關(guān)系式;是否存在某一時刻t,使四邊形APQC的面積是△ABC面積的二分之一?如果存在,求出t的值;不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A2,0),點(diǎn)B0,),點(diǎn)O0,0).△AOB繞著O順時針旋轉(zhuǎn),得△A'OB',點(diǎn)A、B旋轉(zhuǎn)后的對應(yīng)點(diǎn)為A',B',記旋轉(zhuǎn)角為α

(Ⅰ)如圖1,A'B'恰好經(jīng)過點(diǎn)A時,求此時旋轉(zhuǎn)角α的度數(shù),并求出點(diǎn)B'的坐標(biāo);

(Ⅱ)如圖2,若0°<α90°,設(shè)直線AA'和直線BB'交于點(diǎn)P,求證:AA'⊥BB';

(Ⅲ)若0°<α360°,求(Ⅱ)中的點(diǎn)P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).

查看答案和解析>>

同步練習(xí)冊答案