【題目】已知等邊△ABC的兩個頂點坐標為A(-3,0),B(3,0),則點的坐標為____,△ABC的面積為____.
【答案】(0,)或(0,-)
【解析】
根據A、B坐標及等邊三角形的性質可得點C在y軸上,如圖,當點C在y軸正半軸時,由AC1=AB=6,OA=3,利用勾股定理求出OC1的長即可得點C1坐標;同理可求出點C在y軸負半軸時C2的坐標;根據S△ABC=AB·OC即可求出△ABC的面積.
∵A(-3,0),B(3,0),
∴AB中點為(0,0),AB=6,
∵△ABC是等邊三角形,
∴點C在y軸上,AC=AB=6,OA=3,
如圖,當點C在y軸正半軸時,
OC1==3,
∴C1(0,3),
當點C在y軸負半軸時,
同理可得:OC2=3,
∴C2(0,-3),
綜上所述:點C坐標為(0,3)或(0,-3),
∴S△ABC=AB·OC=9,
故答案為:(0,3)或(0,-3);9
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(﹣3,0),點B是x軸上異于點A一動點,設B(x,0),以AB為邊在x軸的上方作正方形ABCD.
(1)如圖(1),若點B(1,0),則點D的坐標為 ;
(2)若點E是AB的中點,∠DEF=90°,且EF交正方形外角的平分線BF于F.
①如圖(2),當x>0時,求證:DE=EF;
②若點F的縱坐標為y,求y關于x的函數解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC邊上一點,且DA=DB,O是AB的中點,CE是△BCD的中線.
(1)如圖a,連接OC,請直接寫出∠OCE和∠OAC的數量關系: ;
(2)點M是射線EC上的一個動點,將射線OM繞點O逆時針旋轉得射線ON,使∠MON=∠ADB,ON與射線CA交于點N.
①如圖b,猜想并證明線段OM和線段ON之間的數量關系;
②若∠BAC=30°,BC=m,當∠AON=15°時,請直接寫出線段ME的長度(用含m的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A,B,C三類,A類年票每張240元,持票進入該園區(qū)時,無需再購買門票;B類年票每張120元,持票者進入該園區(qū)時,需再購買門票,每次4元;C類年票每張80元,持票者進入該園區(qū)時,需再購買門票,每次6元.
(1)如果只能選擇一種購買年票的方式,并且計劃在一年中花費160元在該公園的門票上,通過計算,找出可進入該園區(qū)次數最多的方式.
(2)一年中進入該公園超過多少次時,A類年票比較合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為 度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;
(2)如果購買乙種獎品的件數不超過甲種獎品件數的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,若BF=12,AB=10,則AE的長為( )
A. 13B. 14C. 15D. 16
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結EF、BF,下列結論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結論的個數共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com