【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A,B,C三類,A類年票每張240元,持票進(jìn)入該園區(qū)時,無需再購買門票;B類年票每張120元,持票者進(jìn)入該園區(qū)時,需再購買門票,每次4元;C類年票每張80元,持票者進(jìn)入該園區(qū)時,需再購買門票,每次6元.
(1)如果只能選擇一種購買年票的方式,并且計劃在一年中花費160元在該公園的門票上,通過計算,找出可進(jìn)入該園區(qū)次數(shù)最多的方式.
(2)一年中進(jìn)入該公園超過多少次時,A類年票比較合算?
【答案】(1)若計劃花費160元在該公園的門票上時,則選擇購買C類年票進(jìn)入公園的次數(shù)最多,為13次.(2)一年中進(jìn)入該公園超過30次時,購買A類年票比較合算.
【解析】
(1)160元不可能選A年票,分別算出選擇B、C年票的次數(shù),比較之后進(jìn)行選擇即可;(2)設(shè)超過x次時,購買A類年票比較合算,依題意列出不等式組,解出不等式組即可
(1)解:不可能選A年票.若選B年票,則;
若選C年票,則;
若不購買年票,則
所以,若計劃花費160元在該公園的門票上時,則選擇購買C類年票進(jìn)入公園的次數(shù)最多,為13次.
(2)解:設(shè)超過x次時,購買A類年票比較合算,依題意得
解得
因此,一年中進(jìn)入該公園超過30次時,購買A類年票比較合算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于,的方程組,則下列結(jié)論中:①當(dāng)時,方程組的解是;②當(dāng),的值互為相反數(shù)時,;③不存在一個實數(shù)使得;④若,則正確的個數(shù)有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點D為直角三角形ABC的斜邊AB上的中點,DE⊥AB交AC于E, 連EB、CD,線段CD與BF交于點F.若tanA=,則=_____.如圖2,點D為直角三角形ABC的斜邊AB上的一點,DE⊥AB交AC于E, 連EB、CD;線段CD與BF交于點F.若,tanA=,則=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線的解析式是,并且與軸、軸分別交于A、B兩點.一個半徑為1.5的⊙C,圓心C從點(0,1.5)開始以每秒0.5個單位的速度沿著軸向下運動,當(dāng)⊙C與直線相切時,則該圓運動的時間為( 。
A. 3秒或6秒 B. 6秒 C. 3秒 D. 6秒或16秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點A(a,0),B(c,c),C(0,c),且滿足,P點從A點出發(fā)沿x軸正方向以每秒2個單位長度的速度勻速移動,Q點從O點出發(fā)沿y軸負(fù)方向以每秒1個單位長度的速度勻速移動.
(1)直接寫出點B的坐標(biāo),AO和BC位置關(guān)系是;
(2)當(dāng)P、Q分別是線段AO,OC上時,連接PB,QB,使,求出點P的坐標(biāo);
(3)在P、Q的運動過程中,當(dāng)∠CBQ=30°時,請?zhí)骄俊?/span>OPQ和∠PQB的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC的兩個頂點坐標(biāo)為A(-3,0),B(3,0),則點的坐標(biāo)為____,△ABC的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為A(-1,0),B(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD.
(1)求點C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC.(提示:平行四邊形的面積=底×高)
(2)在y軸上是否存在一點P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標(biāo);若不存在,試說明理由.
(3)點P是線段BD上的一個動點,連接PC,PO,當(dāng)點P在BD上移動時(不與B,D重合)的值是否發(fā)生變化,若不變請求出該值,若會變請并請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知(a+b)2=7,(a-b)2=4,求a2+b2和ab的值.
(2)分解因式:
①x2-8xy+16y2
②(x+y+1)2-(x-y+1)2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com