【題目】環(huán)保局對某企業(yè)排污情況進行檢測,結果顯示:所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(含15天)排污達標.整改過程中,所排污水中硫化物的濃度y(mg/L)與時間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時間x成反比例關系.
(1)求整改過程中硫化物的濃度y與時間x的函數(shù)表達式;
(2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內不超過最高允許的1.0mg/L?為什么?
【答案】
(1)
解:分情況討論:
①當0≤x≤3時,
設線段AB對應的函數(shù)表達式為y=kx+b;
把A(0,0),B(3,4)代入得 ,
解得: ,
∴y=﹣2x+10;
②當x>3時,設y= ,
把(3,4)代入得:m=3×4=12,
∴y= ;
綜上所述:當0≤x≤3時,y=﹣2x+10;當x>3時,y=
(2)
解:能;理由如下:
令y= =1,則x=12<15,
故能在15天以內不超過最高允許的1.0mg/L
【解析】(1)分情況討論:①當0≤x≤3時,設線段AB對應的函數(shù)表達式為y=kx+b;把A(0,0),B(3,4)代入得出方程組,解方程組即可;②當x>3時,設y= ,把(3,4)代入求出m的值即可;(2)令y= =1,得出x=12<15,即可得出結論.本題考查了方程式的應用、反比例函數(shù)的應用;根據(jù)題意得出函數(shù)關系式是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD2=CACB;
(2)求證:CD是⊙O的切線;
(3)過點B作⊙O的切線交CD的延長線于點E,若BC=12,tan∠CDA= ,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經過平移后得到△A1B1C1 , 已知點C1的坐標為(4,0),寫出頂點A1 , B1的坐標;
(2)若△ABC和△A1B2C2關于原點O成中心對稱圖形,寫出△A1B2C2的各頂點的坐標;
(3)將△ABC繞著點O按順時針方向旋轉90°得到△A2B3C3 , 寫出△A2B3C3的各頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習了圖形的旋轉知識后,數(shù)學興趣小組的同學們又進一步對圖形旋轉前后的線段之間、角之間的關系進行了探究.
(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點A逆時針旋轉60°后得到△A′B′E′(A′B′與AD重合),請直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關系為 .
(2)如圖3,當點E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,其面積標記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2 , …,按照此規(guī)律繼續(xù)下去,則S9的值為( )
A.( )6
B.( )7
C.( )6
D.( )7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為調查本校學生周末平均每天做作業(yè)所用時間的情況,隨機調查了50名同學,下圖是根據(jù)調查所得數(shù)據(jù)繪制的統(tǒng)計圖的一部分.
請根據(jù)以上信息,解答下列問題:
(1)在這次調查的數(shù)據(jù)中,做作業(yè)所用時間的眾數(shù)是 ,中位數(shù)是 ,平均數(shù)是 ;
(2)若該校共有2000名學生,根據(jù)以上調查結果估計該校全體學生每天做作業(yè)時間在3小時內(含3小時)的同學共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B、C).若線段AD長為正整數(shù),則點D的個數(shù)共有( 。
A.5個
B.4個
C.3個
D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2﹣6x+c與x軸交于點A(﹣5,0)、B(﹣1,0),與y軸交于點C(0,﹣5),點P是拋物線上的動點,連接PA、PC,PC與x軸交于點D.
(1)求該拋物線所對應的函數(shù)解析式;
(2)若點P的坐標為(﹣2,3),請求出此時△APC的面積;
(3)過點P作y軸的平行線交x軸于點H,交直線AC于點E,如圖2.
①若∠APE=∠CPE,求證: ;
②△APE能否為等腰三角形?若能,請求出此時點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】表為甲班55人某次數(shù)學小考成績的統(tǒng)計結果,關于甲班男、女生此次小考成績的統(tǒng)計量,下列敘述何者正確?( )
成績(分) | 50 | 70 | 90 |
男生(人) | 10 | 10 | 10 |
女生(人) | 5 | 15 | 5 |
合計(人) | 15 | 25 | 15 |
A.男生成績的四分位距大于女生成績的四分位距
B.男生成績的四分位距小于女生成績的四分位距
C.男生成績的平均數(shù)大于女生成績的平均數(shù)
D.男生成績的平均數(shù)小于女生成績的平均數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com