【題目】在學(xué)習(xí)了圖形的旋轉(zhuǎn)知識(shí)后,數(shù)學(xué)興趣小組的同學(xué)們又進(jìn)一步對(duì)圖形旋轉(zhuǎn)前后的線(xiàn)段之間、角之間的關(guān)系進(jìn)行了探究.

(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線(xiàn)段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請(qǐng)直接寫(xiě)出∠E′AF=度,線(xiàn)段BE、EF、FD之間的數(shù)量關(guān)系為
(2)如圖3,當(dāng)點(diǎn)E、F分別在線(xiàn)段BC、CD的延長(zhǎng)線(xiàn)上時(shí),其他條件不變,請(qǐng)?zhí)骄烤(xiàn)段BE、EF、FD之間的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】
(1)30;BE+DF=EF
(2)解:如圖3,在BE上截取BG=DF,連接AG,

在△ABG和△ADF中,

,

∴△ABG≌△ADF(SAS),

∴∠BAG=∠DAF,且AG=AF,

∵∠DAF+∠DAE=30°,

∴∠BAG+∠DAE=30°,

∵∠BAD=60°,

∴∠GAE=60°﹣30°=30°,

∴∠GAE=∠FAE,

在△GAE和△FAE中,

,

∴△GAE≌△FAE(SAS),

∴GE=FE,

又∵BE﹣BG=GE,BG=DF,

∴BE﹣DF=EF,

即線(xiàn)段BE、EF、FD之間的數(shù)量關(guān)系為BE﹣DF=EF

(二)拓展延伸

如圖4,在等邊△ABC中,E、F是邊BC上的兩點(diǎn),∠EAF=30°,BE=1,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△A′B′E′(A′B′與AC重合),連接EE′,AF與EE′交于點(diǎn)N,過(guò)點(diǎn)A作AM⊥BC于點(diǎn)M,連接MN,求線(xiàn)段MN的長(zhǎng)度.

解:如圖4,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△A′B′E′,則

AE=AE′,∠EAE′=60°,

∴△AEE′是等邊三角形,

又∵∠EAF=30°,

∴AN平分∠EAF,

∴AN⊥EE′,

∴直角三角形ANE中, = ,

∵在等邊△ABC中,AM⊥BC,

∴∠BAM=30°,

= ,且∠BAE+∠EAM=30°,

= ,

又∵∠MAN+∠EAM=30°,

∴∠BAE=∠MAN,

∴△BAE∽△MAN,

= ,即 = ,

∴MN=


【解析】解:(一)(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′,則
∠1=∠2,BE=DE′,AE=AE′,
∵∠BAD=60°,∠EAF=30°,
∴∠1+∠3=30°,
∴∠2+∠3=30°,即∠FAE′=30°
∴∠EAF=∠FAE′,
在△AEF和△AE′F中,
,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,即EF=DF+DE′,
∴EF=DF+BE,即線(xiàn)段BE、EF、FD之間的數(shù)量關(guān)系為BE+DF=EF,
所以答案是:30,BE+DF=EF;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處(如圖1).

(1)如圖2,設(shè)折痕與邊BC交于點(diǎn)O,連接,OP、OA.已知△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng);
(2)動(dòng)點(diǎn)M在線(xiàn)段AP上(不與點(diǎn)P、A重合),動(dòng)點(diǎn)N在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,且BN=PM,連接MN、CA,交于點(diǎn)F,過(guò)點(diǎn)M作ME⊥BP于點(diǎn)E.
①在圖1中畫(huà)出圖形;
②在△OCP與△PDA的面積比為1:4不變的情況下,試問(wèn)動(dòng)點(diǎn)M、N在移動(dòng)的過(guò)程中,線(xiàn)段EF的長(zhǎng)度是否發(fā)生變化?請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識(shí)的增強(qiáng),越來(lái)越多的人喜歡騎自行車(chē)出行,也給自行車(chē)商家?guī)?lái)商機(jī).某自行車(chē)行經(jīng)營(yíng)的A型自行車(chē)去年銷(xiāo)售總額為8萬(wàn)元.今年該型自行車(chē)每輛售價(jià)預(yù)計(jì)比去年降低200元.若該型車(chē)的銷(xiāo)售數(shù)量與去年相同,那么今年的銷(xiāo)售總額將比去年減少10%,求:
(1)A型自行車(chē)去年每輛售價(jià)多少元?
(2)該車(chē)行今年計(jì)劃新進(jìn)一批A型車(chē)和新款B型車(chē)共60輛,且B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的兩倍.已知,A型車(chē)和B型車(chē)的進(jìn)貨價(jià)格分別為1500元和1800元,計(jì)劃B型車(chē)銷(xiāo)售價(jià)格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車(chē)銷(xiāo)售獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分別是AB、AD、CB上的點(diǎn),AM=CE=1,AN=3,點(diǎn)P從點(diǎn)M出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿折線(xiàn)MB﹣BE向點(diǎn)E運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)N出發(fā),以相同的速度沿折線(xiàn)ND﹣DC﹣CE向點(diǎn)E運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)后,另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)△APQ的面積為S,運(yùn)動(dòng)時(shí)間為t秒,則S與t函數(shù)關(guān)系的大致圖象為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:

(1)請(qǐng)問(wèn)采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,其面積標(biāo)記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2 , …,按照此規(guī)律繼續(xù)下去,則S9的值為(

A.( 6
B.( 7
C.( 6
D.( 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線(xiàn)l1經(jīng)過(guò)(2,3)和(﹣1,﹣3),直線(xiàn)l2經(jīng)過(guò)原點(diǎn)O,且與直線(xiàn)l1交于點(diǎn)P(﹣2,a).

(1)求a的值;

(2)(﹣2,a)可看成怎樣的二元一次方程組的解?

(3)設(shè)直線(xiàn)l1y軸交于點(diǎn)A,你能求出APO的面積嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,EFB=60°,則矩形ABCD的面積是【 】

A.12 B. 24 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過(guò)點(diǎn)DDE⊥AB,DF⊥AC,,垂足分別為E,F.

(1)求證:△BED≌△CFD

(2)∠A=90°,求證:四邊形DFAE是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案