【題目】如圖1,在Rt△ACB中,∠ACB=90°,∠ABC=30°,AC=1,點D為AC上一動點,連接BD,以BD為邊作等邊△BDE,設CD=n.
(1)當n=1時,EA的延長線交BC的延長線于F,則AF=;
(2)當0<n<1時,如圖2,在BA上截取BH=AD,連接EH.
①設∠CBD=x,用含x的式子表示∠ADE和∠ABE.
②求證:△AEH為等邊三角形.
【答案】
(1)2
(2)解:①證明:∵△BDE是等邊三角形,
∴BE=BD,∠EDB=∠EBD=60°,
在△BCD中,∠ADE+∠EDB=∠CBD+∠C,
即∠ADE+60°=∠CBD+90°=x+90°,
∴∠ADE=30°+∠CBD,
∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,
∴∠HBE=30°+∠CBD,
∴∠ADE=∠HBE,
∴∠ABE=∠ADE=x+90°;
②在△ADE與△HBE中,
,
∴△ADE≌△HBE(SAS),
∴AE=HE,∠AED=∠HEB,
∴∠AED+∠DEH=∠DEH+∠HEB,
即∠AEH=∠BED=60°,
∴△AEH為等邊三角形
【解析】(1)解:∵△BDE是等邊三角形,
∴∠EDB=60°,
∵∠ACB=90°,∠ABC=30°,
∴∠BAC=180°﹣90°﹣30°=60°,
∴FAC=180°﹣60°﹣60°=60°,
∴∠F=180°﹣90°﹣60°=30°,
∵∠ACB=90°,
∴∠ACF=180°﹣90°,
∴AF=2AC=2×1=2;
故答案為:2.
(1)根據三角形內角和定理求出∠BAC=60°,再根據平角等于180°求出∠FAC=60°,然后求出∠F=30°,根據30°角所對的直角邊等于斜邊的一半求解即可;(2)①根據三角形的任意一個外角等于與它不相鄰的兩個內角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,從而得到∠ADE=∠ABE;②然后根據邊角邊證明△ADE與△HBE全等,根據全等三角形對應邊相等可得AE=HE,對應角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根據等邊三角形的判定即可證明.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,把△ABC經過平移得到△A′B′C′,若A(1,m),B(4,2),點A的對應點A′(3,m+2),則點B對應點B′的標為( )
A.(6,5)
B.(6,4)
C.(5,m)
D.(6,m)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=mx與雙曲線y=相交于A、B兩點,A點的坐標為(1,2)
(1)求反比例函數的表達式;
(2)根據圖象直接寫出當mx>時,x的取值范圍;
(3)計算線段AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市南縣大力發(fā)展農村旅游事業(yè),全力打造“洞庭之心濕地公園”,其中羅文村的“花海、涂鴉、美食”特色游享譽三湘,游人如織.去年村民羅南洲抓住機遇,返鄉(xiāng)創(chuàng)業(yè),投入20萬元創(chuàng)辦農家樂(餐飲+住宿),一年時間就收回投資的80%,其中餐飲利潤是住宿利潤的2倍還多1萬元.
(1)求去年該農家樂餐飲和住宿的利潤各為多少萬元?
(2)今年羅南洲把去年的餐飲利潤全部用于繼續(xù)投資,增設了土特產的實體店銷售和網上銷售項目.他在接受記者采訪時說:“我預計今年餐飲和住宿的利潤比去年會有10%的增長,加上土特產銷售的利潤,到年底除收回所有投資外,還將獲得不少于10萬元的純利潤.”請問今年土特產銷售至少有多少萬元的利潤?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于命題“已知:a∥b,b∥c,求證:a∥c”.如果用反證法,應先假設( )
A. a不平行b B. b不平行c C. a⊥c D. a不平行c
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖,已知:∠MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com