【題目】已知二次函數(shù)y=x2-6x+8.求:

(1)拋物線與x軸和y軸相交的交點坐標;

(2)拋物線的頂點坐標;

(3)畫出此拋物線圖象,利用圖象回答下列問題:

①方程x2-6x+8=0的解是什么?

②x取什么值時,函數(shù)值大于0?

③x取什么值時,函數(shù)值小于0?

【答案】(1)(2,0),(4,0),(0,8)(2)(3,-1)(3)①x1=2,x2=4②x<2或x>4③2<x<4

【解析】

1)分別令x=0,y=0即可求得交點坐標.

2)把函數(shù)解析式轉(zhuǎn)化為頂點坐標形勢,即可得頂點坐標.

3)①根據(jù)圖象與x軸交點可知方程的解;②③根據(jù)圖象即可得知x的范圍.

1)由題意,令y=0,得x2-6x+8=0,

解得x1=2,x2=4

所以拋物線與x軸交點為(2,0)和(40),

x=0,y=8

所以拋物線與y軸交點為(0,8),

2)拋物線解析式可化為:y=x2-6x+8=x-32-1,

所以拋物線的頂點坐標為(3-1),

3)如圖所示.

①由圖象知,x2-6x+8=0的解為x1=2,x2=4

②當x2x4時,函數(shù)值大于0;

③當2x4時,函數(shù)值小于0;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一拋物線與x軸的交點是A(﹣2,0)、B1,0),與y軸的交點是C,且經(jīng)過點D2,8).

1)求該拋物線的解析式;

2)作出該拋物線的簡圖(自建坐標系);

3)在拋物線對稱軸上求一點E,使EC+EB最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、BC、D都在這些小正方形的頂點上,ABCD相交于點O,則cosAOD=___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù) y的圖象如圖所示,則二次函數(shù) y =ax 22x和一次函數(shù) ybx+a 在同一平面直角坐標系中的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通過對一次函數(shù)和反比例函數(shù)的學習,我們積累了一些研究函數(shù)的經(jīng)驗,借鑒這些經(jīng)驗,我們來探索函數(shù)的圖像與性質(zhì).

1)填寫表格,并畫出函數(shù)的圖像:

2)觀察圖像,下列結(jié)論中,正確的有 (填寫所有正確結(jié)論的序號).

①圖象在第一、三象限;②圖象在第一、二象限;③圖象關(guān)于軸對稱;④圖象關(guān)于軸對稱;⑤當時,增大而增大.

3)結(jié)合圖像,直接寫出方程的解的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點

求拋物線的解析式;

P是拋物線上的一個動點不與點A、點B重合,過點P作直線軸于點D,交直線AB于點E

時,求P點坐標;

是否存在點P使為等腰三角形?若存在請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx經(jīng)過點A(﹣4,﹣4)和點Bm,0),且m0

1)若該拋物線的對稱軸經(jīng)過點A,如圖,請根據(jù)觀察圖象說明此時y的最小值及m的值;

2)若m4,求拋物線的解析式(也稱關(guān)系式),并判斷拋物線的開口方向.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)h為常數(shù)),在自變量的值滿足的情況下,與其對應的函數(shù)值的最大值為0,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BEAD于點F,AB=6cm,AD=8cm.

1)求證:BDF是等腰三角形;

2)如圖2,過點DDGBE,交BC于點G,連結(jié)FGBD于點O.判斷四邊形FBGD的形狀,并說明理由.

3)在(2)的條件下,求FG的長.

查看答案和解析>>

同步練習冊答案