分析 連接AC、AD,利用“邊角邊”證明△ABC和△AED全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AC=AD,全等三角形對(duì)應(yīng)角相等可得∠BAC=∠EAD,根據(jù)角平分線的定義可得∠BAF=∠EAF,然后求出∠CAF=∠DAF,最后根據(jù)等腰三角形三線合一的性質(zhì)證明即可.
解答 證明:如圖,連接AC、AD,
在△ABC和△AED中,$\left\{\begin{array}{l}{AB=AE}\\{∠B=∠E}\\{BC=ED}\end{array}\right.$,
∴△ABC≌△AED(SAS),
∴AC=AD,∠BAC=∠EAD,
∵AF平分∠BAE,
∴∠BAF=∠EAF,
∴∠BAF-∠BAC=∠EAF-∠EAD,
即∠CAF=∠DAF,
∴AF⊥CD(等腰三角形三線合一).
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),熟練掌握全等三角形的判定方法并作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -6<-4<1 | B. | -4<-6<1 | C. | 1<-4<-6 | D. | 1<-6<-4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com