【題目】已知:如圖,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)P從A點(diǎn)出發(fā)沿A→C→B路徑運(yùn)動(dòng)到B點(diǎn),點(diǎn)Q從B點(diǎn)出發(fā)沿B→C→A路徑運(yùn)動(dòng)到A點(diǎn).點(diǎn)P和點(diǎn)Q分別以2cm/秒和3cm/秒的速度同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).在某時(shí)刻,分別過(guò)P和Q作PE⊥l于點(diǎn)E,QF⊥l于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)PC=2QC時(shí),求t的值.
(2)當(dāng)△PEC與△QFC全等時(shí),求t的值.
【答案】(1)或,PC=2CQ;(2)2或.
【解析】
(1)分類(lèi)討論:①當(dāng)點(diǎn)P在AC上,點(diǎn)Q在BC上時(shí),②當(dāng)點(diǎn)Q在AC上,點(diǎn)P在BC上時(shí),③當(dāng)P、Q都在AC上時(shí),根據(jù)題意列出方程即可得出結(jié)論;
(2)根據(jù)題意化成三種情況,根據(jù)全等三角形的性質(zhì)得出CP=CQ,代入得出關(guān)于t的方程,求出即可.
(1)①當(dāng)點(diǎn)P在AC上,點(diǎn)Q在BC上時(shí),
∵AC=6,AP=2t,BC=8,BQ=3t,
∴CP=6-2t,CQ=8-3t,
∵PC=2QC,
∴6-2t=2(8-3t),
解得:t=
②當(dāng)點(diǎn)Q在AC上,點(diǎn)P在BC上時(shí),不存在PC=2QC
③當(dāng)P、Q都在AC上時(shí),
∵PC=2QC,
∴6-2t=2(3t-8),
解得:t=
綜上所述: t=或;
(2)①如圖1,P在AC上,Q在BC上,
∵PE⊥l,QF⊥l,
∴∠PEC=∠QFC=90°,
∵∠ACB=90°,
∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,
∴∠EPC=∠QCF,
則△PCE≌△CQF(AAS),
∴PC=CQ,即6-2t=8-3t,t=2;
②如圖,P在BC上,Q在AC上,
∵由①知:PC=CQ,
∴2t-6=3t-8,t=2;
2t-6<0,不符合題意;
③當(dāng)P、Q都在AC上時(shí),如圖
CP=6-2t=3t-8,t=;
④當(dāng)Q到A點(diǎn)停止,P在BC上時(shí),AC=PC,2t-6=6時(shí),解得t=6>(不符合題意)
綜上所述:t的值為2s或s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=x2經(jīng)過(guò)平移得到拋物線(xiàn)y=x2﹣2x,其對(duì)稱(chēng)軸與兩拋物線(xiàn)所圍成的陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是輪滑場(chǎng)地的截面示意圖,平臺(tái)AB距x軸(水平)18米,與y軸交于點(diǎn)B,與滑道y=(x≥1)交于點(diǎn)A,且AB=1米.運(yùn)動(dòng)員(看成點(diǎn))在BA方向獲得速度v米/秒后,從A處向右下飛向滑道,點(diǎn)M是下落路線(xiàn)的某位置.忽略空氣阻力,實(shí)驗(yàn)表明:M,A的豎直距離h(米)與飛出時(shí)間t(秒)的平方成正比,且t=1時(shí)h=5,M,A的水平距離是vt米.
(1)求k,并用t表示h;
(2)設(shè)v=5.用t表示點(diǎn)M的橫坐標(biāo)x和縱坐標(biāo)y,并求y與x的關(guān)系式(不寫(xiě)x的取值范圍),及y=13時(shí)運(yùn)動(dòng)員與正下方滑道的豎直距離;
(3)若運(yùn)動(dòng)員甲、乙同時(shí)從A處飛出,速度分別是5米/秒、v乙米/秒.當(dāng)甲距x軸1.8米,且乙位于甲右側(cè)超過(guò)4.5米的位置時(shí),直接寫(xiě)出t的值及v乙的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),∠ADE=∠B=α,DE交AC于點(diǎn)E,且cosα=.下列結(jié)論:①△ADE∽△ACD;②當(dāng)BD=6時(shí),△ABD與△DCE全等;③△DCE為直角三角形時(shí),BD為8或;④0<CE≤6.4.其中正確的結(jié)論是______________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①是一種包裝盒的表面展開(kāi)圖,將它圍起來(lái)可得到一個(gè)幾何體的模型.
(1)請(qǐng)說(shuō)出這個(gè)幾何體模型的最確切的名稱(chēng)是__ __;
(2)如圖②是根據(jù) a,h的取值畫(huà)出的幾何體的主視圖和俯視圖(圖中的粗實(shí)線(xiàn)表示的正方形(中間一條虛線(xiàn))和三角形),請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出該幾何體的左視圖;
(3)在(2)的條件下,已知h=20 cm,求該幾何體的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,邊長(zhǎng)為1的正方形網(wǎng)格中,的三個(gè)頂點(diǎn)、、都在格點(diǎn)上.
(1)作關(guān)于關(guān)于軸的對(duì)稱(chēng)圖形,(其中、、的對(duì)稱(chēng)點(diǎn)分別是、、),并寫(xiě)出點(diǎn)坐標(biāo);
(2)為軸上一點(diǎn),請(qǐng)?jiān)趫D中畫(huà)出使的周長(zhǎng)最小時(shí)的點(diǎn)(不寫(xiě)畫(huà)法,保留畫(huà)圖痕跡),并直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿角平分線(xiàn)BD所在直線(xiàn)翻折,頂點(diǎn)A恰好落在邊BC的中點(diǎn)E處,AE=BD,那么tan∠ABD=( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的兩條對(duì)角線(xiàn)分別長(zhǎng)6和8,點(diǎn)P是對(duì)角統(tǒng)AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M、N分別是邊AB、BC的中點(diǎn),則PM+PN的最小值是( )
A. 10 B. 8 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊△ABC 的邊長(zhǎng)為 4,AD 是 BC 邊上的中線(xiàn),F 是邊 AD 上的動(dòng)點(diǎn),E 是邊 AC 上的點(diǎn), 當(dāng) AE=2,且 EF+CF 取得最小值時(shí).
(Ⅰ)能否求出∠ECF 的度數(shù)?_____(用“能”或“否”填空);
(Ⅱ)如果能,請(qǐng)你在圖中作出點(diǎn) F(保留作圖痕跡,不寫(xiě)證明).并直接寫(xiě)出∠ECF 的度 數(shù);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com