(1)如圖1,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點(diǎn)B是弧
AD
的中點(diǎn),在直徑CD上找一點(diǎn),使BP+AP的值最小,并求BP+AP的最小值.
(2)拓展延伸:如圖2,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.
分析:(1)先作B關(guān)于CD的對(duì)稱點(diǎn)E,連接OA、OB、OE、AE,AE交CD于P,求出∠AOE=90°,求出△AOE是等腰直角三角形,根據(jù)勾股定理求出AE,即可求出答案;
(2)作B關(guān)于AC的對(duì)稱點(diǎn),連接DE并延長(zhǎng),即可得出答案.
解答:解:(1)作B關(guān)于CD的對(duì)稱點(diǎn)E,則E正好在圓周上,
連接OA、OB、OE、AE,AE交CD于P,
則AP+BP最短,
∵∠AOD=60°,B為弧AD中點(diǎn),
∴弧AB=弧BD,且弧AB的度數(shù)是30°,
∴∠AEB=15°(圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半),
∵B關(guān)于CD的對(duì)稱點(diǎn)是E,
∴弧BE的度數(shù)是60°,
∴∠AOE=90°,
∵OA=OE(都是半徑),
∴△OAE是等腰直角三角形,
由勾股定理得:AE=2
2


(2)如圖所示:作B關(guān)于AC的對(duì)稱點(diǎn)E,連接DE并延長(zhǎng)交AC于P即可,
點(diǎn)評(píng):本題考查了軸對(duì)稱-最短路線問題、勾股定理、作圖與基本作圖等知識(shí)點(diǎn)的應(yīng)用,解此題的關(guān)鍵是根據(jù)軸對(duì)稱的性質(zhì)找出P點(diǎn),題型較好,難度較大,對(duì)學(xué)生有較高的要求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)下列說法:
(1)如圖1,已知PA=PB,則PO是線段AB的垂直平分線;
(2)對(duì)于反比例函數(shù)y=
2
x
,(x1,y1),(x2,y2)是其圖象上兩點(diǎn),若x1<x2,則y1>y2; 
(3)對(duì)角線互相垂直平分的四邊形是菱形;
(4)如圖2,在△ABC中,∠A=30°,BC=2,則AC=4;
(5)一組對(duì)邊平行的四邊形是梯形;    
(6)y=
k
x
是反比例函數(shù);
(7)若一個(gè)等腰三角形的兩邊長(zhǎng)為2和3,那么它的周長(zhǎng)為7,
其中正確的有( 。﹤(gè).
A、0B、1C、2D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連接AE、BF.求證:AE=BF;
(2)為響應(yīng)市人民政府“形象勝于生命”的號(hào)召,在甲建筑物上從A點(diǎn)到E點(diǎn)掛一長(zhǎng)為30m的宣傳條幅(如圖2),在乙建筑物的頂部D點(diǎn)測(cè)得頂端A點(diǎn)的仰角為45°,測(cè)得條幅底端E點(diǎn)的俯角為30°,求底部不能直接到達(dá)的兩建筑物之間的水平距離(答案可帶根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知雙曲線y=
k
x
(k>0)
與直線y=k′x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)B的坐標(biāo)為
 
;若點(diǎn)A的橫坐標(biāo)為m,則點(diǎn)B的坐標(biāo)可表示為
 

(2)如圖2,過原點(diǎn)O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點(diǎn),點(diǎn)P在第一象限.
①說明四邊形APBQ一定是平行四邊形;
②設(shè)點(diǎn)A,P的橫坐標(biāo)分別為m,n,四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能,直接寫出m,n應(yīng)滿足的條件;若不可能,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知正方形ABCD,將一個(gè)45度角∝的頂點(diǎn)放在D點(diǎn)并繞D點(diǎn)旋轉(zhuǎn),角的兩邊分別交AB邊和BC邊于點(diǎn)E和F,連接EF.求證:EF=AE+CF
(1)小明是這樣思考的:延長(zhǎng)BC到G,使得CG=AE,連接DG,先證△DAE≌△DCG,再證△DEF≌△DGF,請(qǐng)你借助圖2,按照小明的思路,寫出完整的證明思路.
(2)劉老師看到這條題目后,問了小明兩個(gè)小問題:①如果正方形的邊長(zhǎng)和△BEF的面積都等于6,求EF的長(zhǎng)②將角∝繞D點(diǎn)繼續(xù)旋轉(zhuǎn),使得角∝的兩邊分別和AB邊延長(zhǎng)線、BC邊的延長(zhǎng)線交于E和F,如圖3所示,猜想EF、AE、CF三線段之間的數(shù)量關(guān)系并給予證明.請(qǐng)你幫忙解決.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲,已知A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,且AB=CD.
(1)試問OE=0F嗎?請(qǐng)說明理由.
(2)若△DEC沿AC方向平移到如圖乙的位置,其余條件不變,上述結(jié)論是否仍成立?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案