高盛超市準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個進(jìn)價為40元,經(jīng)市場預(yù)測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.
(1)設(shè)每個小家電定價增加元,每售出一個小家電可獲得的利潤是多少元?(用含的代數(shù)式表示)
(2)當(dāng)定價增加多少元時,商店獲得利潤6000元 ?
(1);(2)當(dāng)定價增加10元或20元時,商店獲得利潤6000元.

試題分析:(1)根據(jù)利潤=銷售價﹣進(jìn)價列關(guān)系式;
(2)總利潤=每個的利潤×銷售量,銷售量為400﹣10x,列方程求解,根據(jù)題意取舍.
試題解析:(1);
(2)由已知得,,
整理得:
解得,  ,
經(jīng)檢驗: 
答:當(dāng)定價增加10元或20元時,商店獲得利潤6000元.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的表達(dá)式是,那么它的頂點坐標(biāo)是           ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一座古拱橋的截面圖.在水平面上取點為原點,以水平面為軸建立直角坐標(biāo)系,橋洞上沿形狀恰好是拋物線的圖像.橋洞兩側(cè)壁上各有一盞距離水面4米高的景觀燈.請求出這兩盞景觀燈間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線分別與y軸、x軸相交于A、B兩點,與二次函數(shù)的圖像交于A、C兩點.

(1)當(dāng)點C坐標(biāo)為(,)時,求直線AB的解析式;
(2)在(1)中,如圖,將△ABO沿y軸翻折180°,若點B的對應(yīng)點D恰好落在二次函數(shù)的圖像上,求點D到直線AB的距離;
(3)當(dāng)-1≤x≤1時,二次函數(shù)有最小值-3,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園與墻平行的一邊長為x(m),花園的面積為y(m2)。
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值,若不能,說明理由:
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).

求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)(a為常數(shù),且a≠0),圖像的頂點為C.以下三個判斷: ①無論a為何值,該函數(shù)的圖像與x軸一定有兩個交點;②無論a為何值,該函數(shù)的圖像在x軸上截得的線段長為1;③若該函數(shù)的圖像與x軸有兩個交點A、B,且S△ABC=1時,則a=8.其中,正確的是(  )
A.①②          B.②③           C.①③          D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的最小值是(     )
A.-2B.2C.-1D.1

查看答案和解析>>

同步練習(xí)冊答案