【題目】將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B的對應(yīng)點(diǎn)E落在坐標(biāo)平面內(nèi),當(dāng)△ADE是等腰直角三角形時(shí),點(diǎn)E的坐標(biāo)為______.
【答案】(0,1)
【解析】
由矩形的性質(zhì)和已知條件得出BD=3,由折疊的性質(zhì)得出AB=AE,BD=DE,∠ABD=∠AED=90°,當(dāng)△ADE是等腰直角三角形時(shí),AE=ED,得出AB=BD,∠BAD=45°,因此∠DAE=∠BAD=45°,得出AB=BD=AE=DE=3,證出四邊形ABDE是正方形,OE=1,即可得出結(jié)果.
解:∵四邊形OABC為矩形,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)D的坐標(biāo)為(m,1),
∴BD=3,
∵將矩形OABC沿AD折疊壓平,使點(diǎn)B的對應(yīng)點(diǎn)E落在坐標(biāo)平面內(nèi),
∴AB=AE,BD=DE,∠ABD=∠AED=90°,
∵當(dāng)△ADE是等腰直角三角形時(shí),AE=ED,
∴AB=BD,∠BAD=45°,
∴∠DAE=∠BAD=45°,
∴E在y軸上,AB=BD=AE=DE=3,
∴四邊形ABDE是正方形,OE=1,
∴點(diǎn)E的坐標(biāo)為(0,1);
故答案為:(0,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A、B分別是x軸、y軸上的動點(diǎn),點(diǎn)C、D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A、B、C、D各點(diǎn)依次排列)為正方形時(shí),稱這個(gè)正方形為此函數(shù)圖象的伴侶正方形.例如:如圖l,正方形ABCD是一次函數(shù)圖象的其中一個(gè)伴侶正方形.
(1)若某函數(shù)是一次函數(shù),直接寫出它的圖象的所有伴侶正方形的邊長;
(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點(diǎn)D(3,m)(m<3)在這個(gè)反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;
(3)若某函數(shù)是二次函數(shù)(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個(gè)點(diǎn)坐標(biāo)為(4,5).直接寫出所有伴侶正方形在拋物線上的另一個(gè)頂點(diǎn)坐標(biāo)及相應(yīng)的拋物線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,此圖象與x軸的交點(diǎn)坐標(biāo)分別為(﹣1,0)、(3,0).下列說法正確的個(gè)數(shù)是( )①ac<0;②a+b+c>0;③方程ax2+bx+c=0的根為x1=﹣1,x2=3;④當(dāng)x>1時(shí),y隨著x的增大而增大.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接五一國際勞動節(jié),某校團(tuán)委組織了“勞動最光榮”有獎(jiǎng)?wù)魑幕顒樱⒃O(shè)立了一、二、三等獎(jiǎng).學(xué)校計(jì)劃派人根據(jù)設(shè)獎(jiǎng)情況買50件獎(jiǎng)品,其中二等獎(jiǎng)件數(shù)比一等獎(jiǎng)件數(shù)的2倍還少10件,三等獎(jiǎng)所花錢數(shù)不超過二等獎(jiǎng)所花錢數(shù)的1.5倍.各種獎(jiǎng)品的單價(jià)如下表所示.如果計(jì)劃一等獎(jiǎng)買x件,買50件獎(jiǎng)品的總錢數(shù)是w元.
(1)求w與x的函數(shù)關(guān)系式及自變量的取值范圍;
(2)請你計(jì)算一下,如何購買這三種獎(jiǎng)品所花的總錢數(shù)最少?最少是多少元?
一等獎(jiǎng) | 二等獎(jiǎng) | 三等獎(jiǎng) |
12元 | 10元 | 5元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直角三角形OBD的直角頂點(diǎn)D在x軸正半軸上,B在第一象限,OB=,tan∠BOD=2.
(1)求圖象經(jīng)過點(diǎn)B的反比例函數(shù)的解析式.
(2)點(diǎn)E是(1)中反比例函數(shù)圖象上一點(diǎn),連接BE、DE,若BE=DE,求四邊形OBED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是斜邊上的中線,過點(diǎn)作的平行線,過點(diǎn)作的垂線,兩線相交于點(diǎn).
(1)求證:;
(2)若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)k是任意實(shí)數(shù),討論關(guān)于x的方程|x2﹣1|=x+k的解的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,D是的中點(diǎn),于E,交CB于點(diǎn)過點(diǎn)D作BC的平行線DM,連接AC并延長與DM相交于點(diǎn)G.
求證:GD是的切線;
求證:;
若,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com