【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點在第一象限,過點A向x軸作垂線,垂足為點B,連接OA,,點M從O出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負方向運動,點M與點N同時出發(fā),設(shè)點M的運動時間為t秒,連接AM,AN,MN.
求a的值;
當(dāng)時,
請?zhí)骄?/span>,,之間的數(shù)量關(guān)系,并說明理由;
試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由.
當(dāng)時,請求出t的值.
【答案】(1)a=2(2)①∠ANM=∠OMN+∠BAN②詳見解析(3)t=或6
【解析】
(2)當(dāng)0<t<2時①∠ANM=∠OMN+∠BAN.如圖2中,過N點作NH∥AB,利用平行的性質(zhì)證明即可.②根據(jù)S四邊形AMON =S四邊形ABOM-S三角形ABN,計算即可;
(3)分兩種情形列出方程即可解決問題;
∵S三角形AOB=12,A(3a,2a),
∴×3a×2a=12,
∴=4,
又∵a>0,
∴a=2.
(2)當(dāng)0<t<2時,
①∠ANM=∠OMN+∠BAN,
如圖2中,過N點作NH∥AB,
∵AB⊥X軸,
∴AB∥OM,
∴AB∥NH∥OM,
∴∠OMN=∠MNH,
∠BAN=∠ANH,
∴∠ANM=∠MNH+∠ANH,
=∠OMN+∠BAN.
②S四邊形AMON 不變化,
理由:∵a=2,
∴A(6,4),
∴OB=6,AB=4,OM=2t BN=3t,
ON=6-3t,
∴S四邊形AMON =S四邊形ABOM-S三角形ABN,
=(AB+OM)×OB-×BN×AB
=(4+2t)×6-×3t×4
=12+6t-6t
=12
∴四邊形AMON的面積不變,
(3)t=或6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】提出命題:如圖,在四邊形ABCD中,∠A=∠C,∠ABC=∠ADC,求證:四邊形ABCD是平行四邊形.
小明提供了如下解答過程:
證明:連接BD.
∵∠1+∠3=180-∠A,∠2+∠4=180―∠C,∠A=∠C,
∴ ∠1+∠3=∠2+∠4.
∵∠ABC=∠ADC,
∴∠1=∠4,∠2=∠3.
∴AB∥CD,AD∥BC.
∴四邊形ABCD是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形).
反思交流:(1)請問小明的解法正確嗎?如果有錯,說明錯在何處,并給出正確的證明過程.
(2)用語言敘述上述命題:___________________________________________________.
運用探究:(3)下列條件中,能確定四邊形ABCD是平行四邊形的是(_____)
A. ∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B. ∠A∶∠B∶∠C∶∠D=1∶3∶1∶3
C. ∠A∶∠B∶∠C∶∠D=2∶3∶3∶2 D. ∠A∶∠B∶∠C∶∠D=1∶1∶3∶3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
(1)若商店計劃銷售完這批商品后能獲利1 100元,請問甲、乙兩種商品應(yīng)分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并指出獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N.
(1)觀察圖1,直接寫出∠AEM與∠BNE的關(guān)系是;(不用證明)
(2)如圖1,當(dāng)M、N都分別在AB、BC上時,可探究出BN與AM的關(guān)系為:;(不用證明)
(3)如圖2,當(dāng)M、N都分別在AB、BC的延長線上時,(2)中BN與AM的關(guān)系式是否仍然成立?若成立,請說明理由:若不成立,寫出你認為成立的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在義烏中小學(xué)生“我的中國夢”讀書活動中,某校對部分學(xué)生作了一次主題為“我最喜愛的圖書”的調(diào)查活動,將圖書分為甲、乙、丙、丁四類,學(xué)生可根據(jù)自己的愛好任選其中一類。學(xué)校根據(jù)調(diào)查情況進行了統(tǒng)計,并繪制了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖如圖。
“我最喜愛的圖書”各類人數(shù)統(tǒng)計圖
請你結(jié)合圖中信息,解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;
(2)被調(diào)查的學(xué)生中,最喜愛丁類圖書的有 名,最喜愛甲類圖書的人數(shù)占本次被調(diào)查人數(shù)的 %;
(3)在最喜愛丙類圖書的學(xué)生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學(xué)校共有學(xué)生1500名,請你估計該校最喜愛丙類圖書的女生和男生分別有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知分式.
(1)當(dāng)____時,分式的值等于零;
(2)當(dāng)____時,分式無意義;
(3)當(dāng)___且___時分式的值是正數(shù);
(4)當(dāng)____時,分式的值是負數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點,直線l平行于直線EC,且直線l與直線EC之間的距離為2,點F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點A恰好落在直線l上,則DF的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com