【題目】如圖,在平行四邊形ABCD中,過(guò)BBECD,垂足為點(diǎn)E,連接AE,FAE上一點(diǎn),且∠BFE=C

1)求證:ABF∽△EAD;

2)若AB=4,BAE=30°,求AE的長(zhǎng).

【答案】(1)見(jiàn)解析 (2)

【解析】試題分析:(1)由平行的性質(zhì)結(jié)合條件可得到∠AFB=∠EDA和∠BAE=∠AED,可證得結(jié)論;
(2)由平行可知∠ABE=90°,在Rt△ABE中,由直角三角形的性質(zhì)結(jié)合勾股定理可求得AE.

試題解析:

(1)證明:∵ADBC,

∴∠C+ADE=180°,

∵∠BFE=C,

∴∠AFB=EDA,

ABDC,

∴∠BAE=AED,

∴△ABF∽△EAD;

(2)解:∵ABCD,BECD,

∴∠ABE=90°,

AB=4,BAE=30°,

AE=2BE,

由勾股定理可求得AE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=x的圖象與函數(shù)y=(x>0)的圖象相交于點(diǎn)P(2,m).

(1)求m,k的值;

(2)直線(xiàn)y=4與函數(shù)y=x的圖象相交于點(diǎn)A,與函數(shù)y=(x>0)的圖象相交于點(diǎn)B,求線(xiàn)段AB長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖∠ABC=∠ADC90°,MN分別是ACBD的中點(diǎn).

1)求證:MNBD

2)若∠BAD45°,連接MB、MD,判斷MBD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標(biāo)系中的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知ABC三個(gè)頂點(diǎn)分別為A﹣1,2)、B21)、C4,5).

1)畫(huà)出ABC關(guān)于x對(duì)稱(chēng)的A1B1C1;

2)以原點(diǎn)O為位似中心,在x軸的上方畫(huà)出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線(xiàn)上,且∠CDA=CBD.

(1)求證:CD是⊙O的切線(xiàn);

(2)若BC=6,tanCDA=,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使邊AD落在對(duì)角線(xiàn)BD上,折痕為DE,且A點(diǎn)落在對(duì)角線(xiàn)F處.若AD=3,CD=4,則AE的長(zhǎng)為(

A. B. 1 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

(1)如圖1,等腰直角四邊形ABCD,AB=BC,ABC=90°

若AB=CD=1,ABCD,求對(duì)角線(xiàn)BD的長(zhǎng).

若ACBD,求證:AD=CD

(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對(duì)角線(xiàn)BD上一點(diǎn),且BP=2PD,過(guò)點(diǎn)P作直線(xiàn)分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,拋物線(xiàn)y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0)、C(0,﹣3).

(1)求拋物線(xiàn)的解析式.

(2)若點(diǎn)D是線(xiàn)段AC下方拋物線(xiàn)上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.

(3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線(xiàn)上,是否存在以A、C、E、P為頂點(diǎn)且以AC為一邊的平行四邊形?如存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案