【題目】如圖,在△ABC中,∠C=90°,D、F是AB邊上的兩點,以DF為直徑的⊙O與BC相交于點E,連接EF,過F作FG⊥BC于點G,其中∠OFE= ∠A.
(1)求證:BC是⊙O的切線;
(2)若sinB= ,⊙O的半徑為r,求△EHG的面積(用含r的代數(shù)式表示).

【答案】
(1)證明:連接OE,

∵在△ABC中,∠C=90°,F(xiàn)G⊥BC,

∴∠BGF=∠C=90°,

∴FG∥AC,

∴∠OFG=∠A,

∴∠OFE= ∠OFG,

∴∠OFE=∠EFG,

∵OE=OF,

∴∠OFE=∠OEF,

∴∠OEF=∠EFG,

∴OE∥FG,

∴OE⊥BC,

∴BC是⊙O的切線


(2)解:∵在Rt△OBE中,sinB= ,⊙O的半徑為r,

∴OB= r,BE= r,

∴BF=OB+OF= r,

∴FG=BFsinB= r,

∴BG= = r,

∴EG=BG﹣BE= r,

∴SFGE= EGFG= r2,EG:FG=1:2,

∵BC是切線,

∴∠GEH=∠EFG,

∵∠EGH=∠FGE,

∴△EGH∽△FGE,

=( 2= ,

∴SEHG= SFGE= r2


【解析】(1)首先連接OE,由在△ABC中,∠C=90°,F(xiàn)G⊥BC,可得FG∥AC,又由∠OFE= ∠A,易得EF平分∠BFG,繼而證得OE∥FG,證得OE⊥BC,則可得BC是⊙O的切線;(2)由在△OBE中,sinB= ,⊙O的半徑為r,可求得OB,BE的長,然后由在△BFG中,求得BG,F(xiàn)G的長,則可求得EG的長,易證得△EGH∽△FGE,然后由相似三角形面積比等于相似比的平方,求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)老師布置了一道思考題“計算:(-)÷()”,小明仔細思考了一番,用了一種不同的方法解決了這個問題.

小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=

(1)請你判斷小明的解答是否正確,并說明理由.

(2)請你運用小明的解法解答下面的問題.

計算:(-)÷(+).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的解析表達式為,且軸交于點,直線經(jīng)過點,直線,交于點

1求點的坐標(biāo);

2求直線的解析表達式;

3的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】趙爽弦圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,若這四個全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點D1、D2、D3、…、Dn在x軸上,則第n個陰影小正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司針對新客戶優(yōu)惠收費,首件物品的收費標(biāo)準(zhǔn)為:若重量不超過10千克,則免運費;當(dāng)重量為千克時,運費為;第二件物品的收費標(biāo)準(zhǔn)為:當(dāng)重量為千克時,運費為。

(1)若新客戶所奇首件物品的重量為13千克,則運費是多少元?

(2)若新客戶所寄首件物品的運費為32,則物品的重量是多少千克?

(3)若新客戶所寄首件物品與第二件物品的重量之比為2:5,共付運費為60,則兩件物品的重量各是多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面幾何中,我們學(xué)過兩條直線平行的定義,下面就兩個一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2k2≠0)的圖象為直線l2,若k1=k2,且b1b2,我們就稱直線l1與直線l2互相平行.解答下面的問題:

(1)求過點P(1,2),且與已知直線y=-2x-1平行的直線l的函數(shù)解析式,并畫出圖象;

(2)設(shè)直線l分別與y軸,x軸交于點A、B,如果直線my=kx+tt>0)與直線l平行,且交x軸于點C,求出△ABC的面積S,關(guān)于t函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子元件廠準(zhǔn)備生產(chǎn)4600個電子元件,甲車間獨立生產(chǎn)一半后,由于要盡快投入市場,乙車間也加入了該電子元件的生產(chǎn).若乙車間每天生產(chǎn)的電子元件的個數(shù)是甲車間每天生產(chǎn)的電子元件的個數(shù)的1.3倍,結(jié)果共用33天完成了任務(wù).問:甲車間每天生產(chǎn)電子元件多少個?在這個問題中設(shè)甲車間每天生產(chǎn)電子元件x個,根據(jù)題意可列方程為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生在校吃午餐所需時間的情況,抽查了20名同學(xué)在校吃午餐所花的時間,獲得如下數(shù)據(jù)(單位:min):

10,12,15,10,16,18,19,18,20,38,

22,25,20,18,18,20,15,16,21,16.

(1)若將這些數(shù)據(jù)分為6組,請列出頻數(shù)表,畫出頻數(shù)直方圖;

(2)根據(jù)頻數(shù)直方圖,你認(rèn)為校方安排學(xué)生吃午餐時間多長為宜?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,AB∥CD,則∠E+∠G與∠B+∠F+∠D有何關(guān)系?

(2)如圖2,若AB∥CD,又能得到什么結(jié)論?請直接寫出結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案