【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把PBC沿直線PC折疊,頂點B的對應(yīng)點是G,過點BBECG,垂足為E,且在AD上,BEPC于點F,那么下列選項正確的是(

BP=BF;②如圖1,若點EAD的中點,那么AEB≌△DEC;③當(dāng)AD=25,且AEDE時,則DE=16;④在③的條件下,可得sinPCB=;⑤當(dāng)BP=9時,BEEF=108.

A.①②③④B.①②④⑤C.①②③⑤D.①②③④⑤

【答案】C

【解析】

易證BEPG可得∠FPG=PFB,再由折疊的性質(zhì)得∠FPB=FPG,所以∠FPB=PFB,根據(jù)等邊對等角即可判斷①;由矩形的性質(zhì)得∠A=D=90°AB=CD,用SAS即可判定全等,從而判斷②;證明△ABE∽△DEC,得出比例式建立方程求出DE,從而判斷③;證明△ECF∽△GCP,進而求出PC,即可得到sinPCB的值,從而判斷④;證明△GEF∽△EAB,利用對應(yīng)邊成比例可得出結(jié)論,從而判斷⑤.

①∵四邊形ABCD為矩形,頂點B的對應(yīng)點是G,

∴∠G=90°,即PGCG,

BECG

BEPG

∴∠FPG=PFB

由折疊的性質(zhì)可得∠FPB=FPG

∴∠FPB=PFB

BP=BF,故①正確;

②∵四邊形ABCD為矩形,

∴∠A=D=90°,AB=DC

又∵點EAD的中點,

AE=DE

在△AEB和△DEC中,

∴△AEB≌△DECSAS),故②正確;

③當(dāng)AD=25時,

∵∠BEC=90°

∴∠AEB+CED=90°,

∵∠AEB+ABE=90°

∴∠CED=ABE,

∵∠A=D=90°,

∴△ABE∽△DEC,

,即,

解得AE=916,

AEDE,

AE=9DE=16,故③正確;

④在RtABE中,

RtCDE中,

由①可知BEPG,

∴△ECF∽△GCP

設(shè)BP=BF=PG=a,則EF=BE-BF=15-a,

由折疊性質(zhì)可得CG=BC=25

,解得

RtPBC中,

sin∠PCB=,故④錯誤.

如圖,連接FG,

∵∠GEF=PGC=90°
∴∠GEF+PGC=180°,
BFPG
BF=PG
∴四邊形BPGF是菱形,
BPGFGF=BP=9
∴∠GFE=ABE,
∴△GEF∽△EAB,

BEEF=ABGF=12×9=108,故⑤正確;

①②③⑤正確,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,GBC的中點,過A、D、G三點的圓O與邊AB、CD分別交于點E、點F,給出下列說法:(1)ACBD的交點是圓O的圓心;(2)AFDE的交點是圓O的圓心;(3)BC與圓O相切,其中正確說法的個數(shù)是(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個頂點的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請按下列要求畫圖:

ABC先向右平移4個單位長度、再向上平移2個單位長度,得到A1B1C1,畫出A1B1C1

②△A2B2C2ABC關(guān)于原點O成中心對稱,畫出A2B2C2

(2)在(1)中所得的A1B1C1A2B2C2關(guān)于點M成中心對稱,請直接寫出對稱中心M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電臺“市民熱線”對上周內(nèi)接到的熱線電話進行了分類統(tǒng)計,得到的統(tǒng)計信息圖如圖所示,其中有關(guān)房產(chǎn)城建的電話有30個,請你根據(jù)統(tǒng)計圖的信息回答以下問題:

1)道路交通熱線電話是多少個占總數(shù)百分比是多少?

2)上周“市民熱線”接到有關(guān)環(huán)境保護方面的電話有多少個?

3)據(jù)此估計,除環(huán)境保護方面的電話外,“市民熱線”今年(按52周計算)將接到的熱線電話約多少個?

4)為了更直觀顯示各類“市民熱線”電話的數(shù)目,你準備采用什么樣的統(tǒng)計方法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2+15mx50m≠0

1)求證:無論m為任何非0實數(shù),此方程總有兩個實數(shù)根.

2)若拋物線ymx2+15mx5m≠0)與x軸交于Ax1,0)、Bx20)兩點,且|x1x2|6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)又稱為端陽節(jié)、重午節(jié)、龍舟節(jié)、正陽節(jié)、洛蘭節(jié)等,是中國四大傳統(tǒng)節(jié)日之一,端午習(xí)俗眾多,其中吃粽子是端午節(jié)的習(xí)俗主題之一,某超市5月以50/盒的進價購進一款粽子1000盒,以100/盒的售價全部銷售完.銷售人員根據(jù)市場調(diào)研預(yù)測,該款粽子每盒的售價在5月售價基礎(chǔ)上每降價5元,月銷量就會相應(yīng)增加100盒,該超市6月計劃購進該款粽子不超過1400.

1)根據(jù)該超市6月計劃,該款粽子6月的售價最少每盒可以定價多少元?

2)實際上,6月該超市購進該款粽子的進價比5月便宜了元,而實際售價在5月基礎(chǔ)上降了m元,已知6月的銷售利潤比5月增加8%,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)了統(tǒng)計知識后,小紅就本班同學(xué)上學(xué)喜歡的出行方式進行了一次調(diào)查,圖(1)和圖(2)是她根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答以下問題:

1)補全條形統(tǒng)計圖,并計算出騎車部分所對應(yīng)的圓心角的度數(shù).

2)若由3喜歡乘車的學(xué)生,1喜歡騎車的學(xué)生組隊參加一項活動,現(xiàn)欲從中選出2人擔(dān)任組長(不分正副),求出2人都是喜歡乘車的學(xué)生的概率,(要求列表或畫樹狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011貴州安順,16,4分)如圖,在RtABC中,C=90°,BC=6cm,AC=8cm,按圖中所示方法將BCD沿BD折疊,使點C落在AB邊的C點,那么ADC的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某單位要建一個面積為48 m2的小倉庫,小倉庫有一邊靠墻(墻長10m),并在與墻平行的一邊開一道寬1 m的門,現(xiàn)有能圍成19 m的木板,求小倉庫的長與寬?

(注意:倉庫靠墻的那一邊不能超過墻長)

查看答案和解析>>

同步練習(xí)冊答案