【題目】“端午節(jié)”又稱為端陽(yáng)節(jié)、重午節(jié)、龍舟節(jié)、正陽(yáng)節(jié)、洛蘭節(jié)等,是中國(guó)四大傳統(tǒng)節(jié)日之一,端午習(xí)俗眾多,其中吃粽子是端午節(jié)的習(xí)俗主題之一,某超市5月以50元/盒的進(jìn)價(jià)購(gòu)進(jìn)一款粽子1000盒,以100元/盒的售價(jià)全部銷(xiāo)售完.銷(xiāo)售人員根據(jù)市場(chǎng)調(diào)研預(yù)測(cè),該款粽子每盒的售價(jià)在5月售價(jià)基礎(chǔ)上每降價(jià)5元,月銷(xiāo)量就會(huì)相應(yīng)增加100盒,該超市6月計(jì)劃購(gòu)進(jìn)該款粽子不超過(guò)1400盒.
(1)根據(jù)該超市6月計(jì)劃,該款粽子6月的售價(jià)最少每盒可以定價(jià)多少元?
(2)實(shí)際上,6月該超市購(gòu)進(jìn)該款粽子的進(jìn)價(jià)比5月便宜了元,而實(shí)際售價(jià)在5月基礎(chǔ)上降了m元,已知6月的銷(xiāo)售利潤(rùn)比5月增加8%,求m的值.
【答案】(1)最少每盒定價(jià)80元;(2)m=10
【解析】
(1)設(shè)該款粽子6月的售價(jià)最少每盒可以定價(jià)x元,根據(jù)該超市6月計(jì)劃購(gòu)進(jìn)該款粽子不超過(guò)1400盒.列不等式可求解;
(2)根據(jù)6月份每盒的利潤(rùn)乘以盒數(shù)等于5月份利潤(rùn)的(1+8%)倍,列方程可求解.
(1)設(shè)該款粽子6月的售價(jià)最少每盒可以定價(jià)x元,由題意得
1000+×100≤1400
解得x≥80
答:該款粽子6月的售價(jià)最少每盒可以定價(jià)80元.
(2)由題意得
化簡(jiǎn)得m250m+400=0
∴m=10或m=40
當(dāng)m=10時(shí),售價(jià)為10010=90元,符合題意,
當(dāng)m=40時(shí),售價(jià)為10040=60<80,不符合題意,
答:m的值為10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線G:y=mx2+2mx+m﹣1(m≠0)與y軸交于點(diǎn)C,拋物線G的頂點(diǎn)為D,直線:y=mx+m﹣1(m≠0).
(1)當(dāng)m=1時(shí),畫(huà)出直線和拋物線G,并直接寫(xiě)出直線被拋物線G截得的線段長(zhǎng).
(2)隨著m取值的變化,判斷點(diǎn)C,D是否都在直線上并說(shuō)明理由.
(3)若直線被拋物線G截得的線段長(zhǎng)不小于2,結(jié)合函數(shù)的圖象,直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種文具,進(jìn)價(jià)為5元/件.售價(jià)為6元/件時(shí),當(dāng)天的銷(xiāo)售量為100件.在銷(xiāo)售過(guò)程中發(fā)現(xiàn):售價(jià)每上漲0.5元,當(dāng)天的銷(xiāo)售量就減少5件.設(shè)當(dāng)天銷(xiāo)售單價(jià)統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷(xiāo)售利潤(rùn)為元.
(1)求與的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(2)要使當(dāng)天銷(xiāo)售利潤(rùn)不低于240元,求當(dāng)天銷(xiāo)售單價(jià)所在的范圍;
(3)若每件文具的利潤(rùn)不超過(guò),要想當(dāng)天獲得利潤(rùn)最大,每件文具售價(jià)為多少元?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把△PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是G,過(guò)點(diǎn)B作BE⊥CG,垂足為E,且在AD上,BE交PC于點(diǎn)F,那么下列選項(xiàng)正確的是( )
①BP=BF;②如圖1,若點(diǎn)E是AD的中點(diǎn),那么△AEB≌△DEC;③當(dāng)AD=25,且AE<DE時(shí),則DE=16;④在③的條件下,可得sin∠PCB=;⑤當(dāng)BP=9時(shí),BEEF=108.
A.①②③④B.①②④⑤C.①②③⑤D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
小剛同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠APB=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長(zhǎng)為,問(wèn)題得到解決.
請(qǐng)你參考小剛同學(xué)的思路,探究并解決下列問(wèn)題:
如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=2,PC=.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動(dòng)點(diǎn)D從點(diǎn)A出發(fā)以每秒3個(gè)單位的速度運(yùn)動(dòng)至點(diǎn)B,過(guò)點(diǎn)D作DE⊥AB交射線AC于點(diǎn)E.設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)線段AE的長(zhǎng)為 .(用含t的代數(shù)式表示)
(2)若△ADE與△ACB的面積比為1:4時(shí),求t的值.
(3)設(shè)△ADE與△ACB重疊部分圖形的周長(zhǎng)為L,求L與t之間的函數(shù)關(guān)系式.
(4)當(dāng)直線DE把△ACB分成的兩部分圖形中有一個(gè)是軸對(duì)稱圖形時(shí),直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年月日,西藏日喀則市謝通門(mén)縣發(fā)生了級(jí)地震,某校九年班、九年二班兩班的班長(zhǎng)交流了為地震災(zāi)區(qū)捐款的情況:
(1)九年一班班長(zhǎng)說(shuō):“我們班捐款總額為元,我們班人數(shù)比你們班多人”.
(2)九年二班班長(zhǎng)說(shuō):“我們班捐款總額也為元,我們班人均捐款比你們班人均捐款多”.
請(qǐng)根據(jù)兩個(gè)班長(zhǎng)的對(duì)話,求這兩個(gè)班級(jí)每班的人均捐款數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的直徑長(zhǎng)為10,弦AB長(zhǎng)為8,弦長(zhǎng)CD為6,且AB∥CD,則弦AB與CD之間的距離為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com