【題目】如圖,四邊形ABCD中,∠ADB60°,∠CDB50°

1)若ADBC,ABCD,求∠ABC的度數(shù);

2)若∠A70°,請(qǐng)寫出圖中平行的線段,并說明理由.

【答案】(1)110°;(2)AB∥CD.理由見解析.

【解析】

1)先由平行線的性質(zhì)求得∠A,再由平行線的性質(zhì)求得∠ABC;

2)根據(jù)三角形內(nèi)角和定理可求∠ABD50°,再由平行線的判定即可求解.

解:(1∵∠ADB60°,∠CDB50°

∴∠ADC110°

∵AD∥BC,

∴∠A70°

∵AB∥CD,

∴∠ABC110°;

2AB∥CD.理由如下:

∵∠ADB60°∠A70°,

∴∠ABD50°

∴∠CDB∠ABD50°,

∴AB∥CD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,A=45°,以AB為直徑的⊙OCO于點(diǎn)D.

(1)求證:BC是⊙O的切線;

(2)連接BD,若BD=m,tanCBD=n,寫出求直徑AB的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=x﹣4x軸交于點(diǎn)A、B,與y 軸相交于點(diǎn)C.

(1)求直線BC的解析式;

(2)將直線BC向上平移后經(jīng)過點(diǎn)A得到直線l:y=mx+n,點(diǎn)D在直線l上,若以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,平分.

1)如圖1,若,

①若,則的度數(shù)為______(直接寫出結(jié)果);

②求的度數(shù);

2)將圖1中的繞頂點(diǎn)順時(shí)針旋轉(zhuǎn)至圖2的位置,試探究的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在一個(gè)長(zhǎng)方形廣場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇.若廣場(chǎng)的長(zhǎng)為m米,寬為n米,圓形的半徑為r米.

1)列式表示廣場(chǎng)空地的面積.

2)若廣場(chǎng)的長(zhǎng)為300米,寬為200米,圓形的半徑為30米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).

3)如圖2所示,在(2)的條件下,若在廣場(chǎng)的中間再建一個(gè)半徑為R的圓形花壇,使廣場(chǎng)的空地面積不少于廣場(chǎng)總面積的,求R的最大整數(shù)值(π3.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一套房子的平面圖,尺寸如圖.

(1)這套房子的總面積是多少?(用含x、y的代數(shù)式表示)

(2)如果x=1.8,y=1,那么房子的面積是多少平方米?如果每平方米房?jī)r(jià)為5萬元,那么房屋總價(jià)多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CE平分∠ACDAE平分∠BAC,∠EAC+ACE=90°

1)請(qǐng)判斷ABCD的位置關(guān)系并說明理由;

2)如圖2,當(dāng)∠E=90°ABCD的位置關(guān)系保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;

3)如圖3,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn)且ABCD的位置關(guān)系保持不變,當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)A、B分別落在x軸、y軸的正半軸上,頂點(diǎn)C在第一象限,BCx軸平行.已知BC=2,ABC的面積為1

1)求點(diǎn)C的坐標(biāo).

2)將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,ABC旋轉(zhuǎn)到A1B1C的位置,求經(jīng)過點(diǎn)B1的反比例函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)視力,學(xué)校開展了全校性的視力保健活動(dòng),活動(dòng)前,隨機(jī)抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn),精確到0.1);活動(dòng)后,再次檢查這部分學(xué)生的視力,結(jié)果如表所示

分組

頻數(shù)

4.0≤x<4.2

2

4.2≤x<4.4

3

4.4≤x<4.6

5

4.6≤x<4.8

8

4.8≤x<5.0

17

5.0≤x<5.2

5

(1)求活動(dòng)所抽取的學(xué)生人數(shù);

(2)若視力達(dá)到4.8及以上為達(dá)標(biāo),計(jì)算活動(dòng)前該校學(xué)生的視力達(dá)標(biāo)率;

(3)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,從兩個(gè)不同的角度評(píng)價(jià)視力保健活動(dòng)的效果.

查看答案和解析>>

同步練習(xí)冊(cè)答案