【題目】已知二次函數(shù)y=ax2﹣4ax+3a.
(Ⅰ)求該二次函數(shù)的對(duì)稱軸;
(Ⅱ)若該二次函數(shù)的圖象開口向下,當(dāng)1≤x≤4時(shí),y的最大值是2,且當(dāng)1≤x≤4時(shí),函數(shù)圖象的最高點(diǎn)為點(diǎn)P,最低點(diǎn)為點(diǎn)Q,求△OPQ的面積;
(Ⅲ)若對(duì)于該拋物線上的兩點(diǎn)P(x1,y1),Q(x2,y2),當(dāng)t≤x1≤t+1,x2≥5時(shí),均滿足y1≥y2,請(qǐng)結(jié)合圖象,直接寫出t的最大值.
【答案】(Ⅰ)對(duì)稱軸x=2;(Ⅱ)△OPQ的面積為10;(Ⅲ)t的最大值為4.
【解析】分析:根據(jù)拋物線的對(duì)稱軸公式直接寫出即可.
拋物線的開口向下,對(duì)稱軸在1≤x≤4的范圍內(nèi),應(yīng)該是在對(duì)稱軸處取得最大值,即可求出頂點(diǎn)坐標(biāo),代入求出的值,分析二次函數(shù)在1≤x≤4的范圍內(nèi)的最小值,求出點(diǎn) 的面積可以用長(zhǎng)方形的面積減去3個(gè)直角三角形的面積即可.
當(dāng) 時(shí),均滿足拋物線開口向下,點(diǎn)P在點(diǎn)Q左邊或重合時(shí),滿足條件,即可列出不等式,求解即可.
詳解:(Ⅰ)對(duì)稱軸x=﹣=2.
(Ⅱ)∵該二次函數(shù)的圖象開口向下,且對(duì)稱軸為直線x=2,
∴當(dāng)x=2時(shí),y取到在1≤x≤4上的最大值為2,即
∴
∴
∴
∵當(dāng)1≤x≤2時(shí),y隨x的增大而增大,
∴當(dāng)x=1時(shí),y取到在1≤x≤2上的最小值0.
∵當(dāng)2≤x≤4時(shí),y隨x的增大而減小,
∴當(dāng)x=4時(shí),y取到在2≤x≤4上的最小值﹣6.
∴當(dāng)1≤x≤4時(shí),y的最小值為﹣6,即
∴的面積為
(Ⅲ)∵當(dāng) 時(shí),均滿足
∴當(dāng)拋物線開口向下,點(diǎn)P在點(diǎn)Q左邊或重合時(shí),滿足條件,
∴
∴
∴t的最大值為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長(zhǎng)方形中,,,現(xiàn)將長(zhǎng)方形向右平移,再向下平移后到長(zhǎng)方形的位置.
(1)如圖,用的代數(shù)式表示長(zhǎng)方形與長(zhǎng)方形的重疊部分的面積,這時(shí)應(yīng)滿足怎樣的條件?
(2)如圖,用的代數(shù)式表示六邊形的面積;
(3)當(dāng)這兩個(gè)長(zhǎng)方形沒有重疊部分時(shí),第(2)小題的結(jié)論是否改變,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)由若干小正方形堆成的幾何體,它從正面看和從左面看的圖形如圖1所示.
這個(gè)幾何體可以是圖2中甲,乙,丙中的______;
這個(gè)幾何體最多由______個(gè)小正方體堆成,最少由______個(gè)小正方體堆成;
請(qǐng)?jiān)趫D3中用陰影部分畫出符合最少情況時(shí)的一個(gè)從上面往下看得到的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是4,點(diǎn)A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點(diǎn)C與公路上的?空A的距離為300米,與公路上的另一?空B的距離為400米,且CA⊥CB,如圖所示.為了安全起見,爆破點(diǎn)C周圍半徑250米范圍內(nèi)不得進(jìn)入,問在進(jìn)行爆破時(shí),公路AB段是否有危險(xiǎn)?請(qǐng)用你學(xué)過的知識(shí)加以解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F.試判斷AF與CE是否相等,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩條邊、分別在軸和軸上,已知點(diǎn) 坐標(biāo)為(4,–3).把矩形沿直線折疊,使點(diǎn)落在點(diǎn)處,直線與、、的交點(diǎn)分別為、、.
(1)線段 ;
(2)求點(diǎn)坐標(biāo)及折痕的長(zhǎng);
(3)若點(diǎn)在軸上,在平面內(nèi)是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是菱形?若存在,則請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com