【題目】如圖,已知在四邊形ABCD中,AB=CD,BC=AD,E、F是對角線AC上兩點,且AE=CF.求證:BE=DF.
【答案】證明見解析.
【解析】
法一可先證四邊形ABCD是平行四邊形,再證△ABE≌△CDF,即可證明BE=DF.法二根據(jù)先證四邊形ABCD是平行四邊形平行.根據(jù)SAS證△ABE≌△CDF,即可推出BE=DF.
解:法一)∵AB=CD,BC=AD,∴四邊形ABCD是平行四邊形
∴AB∥CD ,∴∠BAE=∠DCF
又∵AE=CF ,∴△ABE≌△CDF(SAS) ,∴BE=DF .
法二)連接BF、DE及BD,BD交AC于點O,
.
∵AB=CD,BC=AD∴四邊形ABCD是平行四邊形
∴OB=OD,OA=OC ∵AE=CF
∴OA-AE=OC-CF ,即OE=OF
∴△ABE≌△CDF(SAS) ,∴BE=DF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點A、B、C、D均在坐標(biāo)軸上,AB∥CD.
(1)求證:∠ABO+∠CDO=90°;
(2)如圖2,BM平分∠ABO交x軸于點M,DN平分∠CDO交y軸于點N,求∠BMO+∠OND的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的端點坐標(biāo)為A(﹣1,2),B(3,1),若直線y=kx﹣2與線段AB有交點,則k的值可能是( 。
A. ﹣3B. ﹣2C. ﹣1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,△A1B1C1是△ABC向右平移四個單位長度后得到的,且三個頂點的坐標(biāo)分別為A1(1,1),B1(4,2),C1(3,4).
(1)請畫出△ABC,并寫出點A、B、C的坐標(biāo);
(2)求出△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC和同一平面內(nèi)的點D.
(1)如圖1,點D在BC邊上,過D作DE∥BA交AC于E,DF∥CA交AB于F.
① 依題意,在圖1中補(bǔ)全圖形;
② 判斷∠EDF與∠A的數(shù)量關(guān)系,并直接寫出結(jié)論(不需證明).
(2)如圖2,點D在BC的延長線上,DF∥CA,∠EDF=∠A.判斷DE與BA的位置關(guān)系,并證明.
(3)如圖3,點D是△ABC外部的一個動點,過D作DE∥BA交直線AC于E,DF∥CA交直線AB于F,直接寫出∠EDF與∠A的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年9月8日—10日,第六屆翼裝飛行世界錦標(biāo)賽在我市天門山風(fēng)景區(qū)隆重舉行,來自全球11個國家的16名選手參加了激烈的角逐.如圖,某選手從離水平地面1000米高的A點出發(fā)(AB=1000米),沿俯角為的方向直線飛行1400米到達(dá)D點,然后打開降落傘沿俯角為的方向降落到地面上的C點,求該選手飛行的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某月的月歷表,在此月歷表上可以用一個矩形圈出個位置相鄰的數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個數(shù)中,最大數(shù)與最小數(shù)的積為192,則這9個數(shù)的和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣4,0),B(2,0),與y軸交于點C(0,4),線段BC的中垂線與對稱軸l交于點D,與x軸交于點F,與BC交于點E,對稱軸l與x軸交于點H.
(1)求拋物線的函數(shù)表達(dá)式;
(2)求點D的坐標(biāo);
(3)點P為x軸上一點,⊙P與直線BC相切于點Q,與直線DE相切于點R.求點P的坐標(biāo);
(4)點M為x軸上方拋物線上的點,在對稱軸l上是否存在一點N,使得以點D,P,M.N為頂點的四邊形是平行四邊形?若存在,則直接寫出N點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DF∥AB,DE∥BC,連接BD.
(1)求證:△DEB≌△BFD;
(2)若點D是AC邊的中點,當(dāng)△ABC滿足條件_____時,四邊形DEBF為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com