如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C、A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

【答案】分析:(1)設(shè)拋物線解析式為y=ax2+bx,把已知坐標(biāo)代入求出拋物線的解析式.
(2)求出S的面積,根據(jù)t的取值不同分三種情況討論S與t的函數(shù)關(guān)系式.
(3)根據(jù)旋轉(zhuǎn)的性質(zhì),代入解析式,判斷是否存在.
解答:解:(1)方法一:由圖象可知:拋物線經(jīng)過原點(diǎn),
設(shè)拋物線解析式為y=ax2+bx(a≠0).
把A(1,1),B(3,1)代入上式得:(1分)

解得.(3分)
∴所求拋物線解析式為y=-x2+x.(4分)
方法二:∵A(1,1),B(3,1),
∴拋物線的對(duì)稱軸是直線x=2.
設(shè)拋物線解析式為y=a(x-2)2+h(a≠0)(1分)
把O(0,0),A(1,1)代入

解得,(3分)
∴所求拋物線解析式為y=-(x-2)2+.(4分)

(2)分三種情況:S=t2,BM=BN=1-(t-3)=4-t
①當(dāng)0<t≤2,重疊部分的面積是S△OPQ,過點(diǎn)A作AF⊥x軸于點(diǎn)F,
∵A(1,1),
∴在Rt△OAF中,AF=OF=1,∠AOF=45°,在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°,
∴PQ=OQ=tcos 45°=t.S=t2,(6分)
②當(dāng)2<t≤3,設(shè)PQ交AB于點(diǎn)G,作GH⊥x軸于點(diǎn)H,∠OPQ=∠QOP=45°,
則四邊形OAGP是等腰梯形,重疊部分的面積是S梯形OAGP
∴AG=FH=t-2,
∴S=(AG+OP)AF=(t+t-2)×1=t-1.(8分)
③當(dāng)3<t<4,設(shè)PQ與AB交于點(diǎn)M,交BC于點(diǎn)N,重疊部分的面積是S五邊形OAMNC
因?yàn)椤鱌NC和△BMN都是等腰直角三角形,
所以重疊部分的面積是S五邊形OAMNC=S梯形OABC-S△BMN
∵B(3,1),OP=t,
∴PC=CN=t-3,
∴S=(2+3)×1-(4-t)2,
S=-t2+4t-.(10分)

(3)存在.
當(dāng)O點(diǎn)在拋物線上時(shí),將O(t,t)代入拋物線解析式,解得t=0(舍去),t=1;
當(dāng)Q點(diǎn)在拋物線上時(shí),Q(t,t)代入拋物線解析式得t=0(舍去),t=2.
故t=1或2.
點(diǎn)評(píng):本題是一道典型的綜合題,重點(diǎn)考查了二次函數(shù)的有關(guān)知識(shí)以及考生理解圖形的能力,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C、A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(精英家教網(wǎng)0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C.A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過P點(diǎn)作PQ垂精英家教網(wǎng)直于直線OA,垂足為Q,設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖所示,已知在直角梯形ABCD中,∠B=∠C=90°,E為BC上的點(diǎn),且EA=ED,∠AEB=75°,∠DEC=45°,試說明AB=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得以C、P、Q為頂點(diǎn)的三角形與△OAB相似?若存在,求出t的值;若不存在,請(qǐng)說明理由.
(4)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知在直角三角形紙片ABC中,BC=3,∠BAC=30°,在AC上取一點(diǎn)E,以BE為折痕,使AB的一部分與BC重合,A與BC延長(zhǎng)線上的點(diǎn)D重合,則DE的長(zhǎng)度為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案