已知:如圖,AE∥BF,AC平分∠BAD,交BF于點(diǎn)C,BD平分∠ABC,交AE于點(diǎn)D,連接CD.
求證:四邊形ABCD是菱形.
考點(diǎn):菱形的判定
專題:證明題
分析:菱形的判別方法是說(shuō)明一個(gè)四邊形為菱形的理論依據(jù),常用三種方法:①定義;②四邊相等;③對(duì)角線互相垂直平分.
解答:證明:∵AC平分∠BAD,∴∠BAC=∠CAD.
又∵AE∥BF,∴∠BCA=∠CAD,
∴∠BAC=∠BCA.
∴AB=BC,
同理可證AB=AD.
∴AD=BC,
又AD∥BC,
∴四邊形ABCD是平行四邊形,
又AB=BC,
∴平行四邊形ABCD是菱形.
點(diǎn)評(píng):此題主要考查了菱形的判定以及綜合利用了角平分線的定義和平行線的性質(zhì),利用已知得出AB=BC是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

先化簡(jiǎn),再求值:
x
x2-1
-1÷
1+x
2
,其中x=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,解決下列問(wèn)題:
(1)關(guān)于x的一元二次方程-x2+bx+c=0的解為
 
;
(2)求此拋物線的解析式;
(3)當(dāng)x為值時(shí),y<0;
(4)若直線y=k與拋物線沒(méi)有交點(diǎn),直接寫出k的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若等腰三角形的兩個(gè)外角之和為200°,則底角度數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

作圖題:在∠AOB內(nèi)有兩點(diǎn)M、N,求作一點(diǎn)P使得PM=PN,且P到∠AOB兩邊的距離相等.要求尺規(guī)作圖,不寫作法,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)于某一特定范圍內(nèi)的x的任一允許值,P=|1-2x|+|1-3x|+…+|1-9x|+|1-10x|為定值,則這個(gè)定值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,將△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,B點(diǎn)對(duì)應(yīng)點(diǎn)的坐標(biāo)為(  )
A、(1,3)
B、(0,3)
C、(1,2)
D、(0,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC為等邊三角形,BD=DE,∠BDE=120°,連接CE,F(xiàn)為CE的中點(diǎn),連接DF并倍長(zhǎng),連接AD、CG、AG.下列結(jié)論:
①CG=DE;②若DE∥BC,則△ABH∽△GBD;③在②的條件下,若CE⊥BC,則
AD
BD
=
19
2

其中正確的有( 。
A、①②③都正確
B、只有①②正確
C、只有②③正確
D、只有①③正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

肥胖已成為青少年十分關(guān)注的一個(gè)問(wèn)題,下表是人的身高與標(biāo)準(zhǔn)體重的對(duì)應(yīng)表:
身高(cm) 157 159 160 170 175 180
標(biāo)準(zhǔn)體重(kg) 52 54 54 63 67.5 72
設(shè)標(biāo)準(zhǔn)體重為y(kg),身高為x(cm),專家認(rèn)為當(dāng)身高不大于159cm時(shí),y與x的函數(shù)關(guān)系式是y=x-105;當(dāng)身高不小于160cm,y與x也成某種函數(shù)關(guān)系.
(1)當(dāng)身高不小于160cm時(shí),求y與x的函數(shù)解析式;
(2)如果一個(gè)人的身高是163cm,求這個(gè)人的標(biāo)準(zhǔn)體重;
(3)專家認(rèn)為,一個(gè)人的實(shí)際體重超過(guò)或低于標(biāo)準(zhǔn)體重的10%(包括±10%)為正常范圍,超過(guò)10%-20%屬于輕度肥胖,超過(guò)50%屬于重度肥胖,一個(gè)人實(shí)際體重為55kg,屬于正常范圍,求出這個(gè)人的身高范圍(精確到個(gè)位).

查看答案和解析>>

同步練習(xí)冊(cè)答案