(1)將拋物線y=2x2+8x+2向下平移6個(gè)單位,求平移后的拋物線的解析式;
(2)定義:如果點(diǎn)P(t,t)在拋物線上,則點(diǎn)P叫做這條拋物線的不動點(diǎn).求出(1)中所求平移后的拋物線的所有不動點(diǎn)的坐標(biāo).
分析:(1)由于拋物線向下平移6個(gè)單位,則x'=x,y'=y-6,代入原拋物線方程即可得平移后的方程.
(2)通過將點(diǎn)P(t,t)代入拋物線方程求得t值即可.
解答:解:(1)由題意得:
x′=x
y′=y-6

代入原拋物線方程得:y'+6=2x'2+8x'+2,
∴平移后拋物線的解析式為y=2x2+8x-4.

(2)設(shè)P(t,t)是拋物線的不動點(diǎn),則2t2+8t-4=t.
解得:t1=
1
2
,t2=-4
,
不動點(diǎn)P1(
1
2
,
1
2
),P2(-4,-4)
點(diǎn)評:本題考查了二次函數(shù)圖象的幾何變換,重點(diǎn)是找出平移變換的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

43、將拋物線y=x2+2x-3向左平移4個(gè)單位,再向下平移3個(gè)單位,所得拋物線的函數(shù)表達(dá)式為
y=x2+10x+18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧波模擬)在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y1=ax2+3x+c的圖象經(jīng)過原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B.
(1)求:二次函數(shù)y1的解析式及B點(diǎn)坐標(biāo);
(2)若將拋物線y1以x=3為對稱軸向右翻折后,得到一個(gè)新的二次函數(shù)y2,已知二次函數(shù)y2與x軸交于兩點(diǎn),其中右邊的交點(diǎn)為C點(diǎn).點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動,過P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動時(shí),點(diǎn)D、點(diǎn)E、點(diǎn)F也隨之運(yùn)動);
①當(dāng)點(diǎn)E在二次函數(shù)y1的圖象上時(shí),求OP的長.
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動,速度為每秒1個(gè)單位長度,同時(shí)線段OC上另一個(gè)點(diǎn)Q從C點(diǎn)出發(fā)向O點(diǎn)做勻速運(yùn)動,速度為每秒2個(gè)單位長度(當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)停止運(yùn)動,P點(diǎn)也同時(shí)停止運(yùn)動).過Q點(diǎn)作x軸的垂線,與直線AC交于G點(diǎn),以QG為邊在QG的左側(cè)作正方形QGMN(當(dāng)Q點(diǎn)運(yùn)動時(shí),點(diǎn)G、點(diǎn)M、點(diǎn)N也隨之運(yùn)動),若P點(diǎn)運(yùn)動t秒時(shí),兩個(gè)正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=-(x-1)2-2向左平移1個(gè)單位,再向上平移1個(gè)單位,則平移后拋物線的表達(dá)式
y=-x2-1
y=-x2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=2x2向下平移1個(gè)單位,得到的拋物線是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將拋物線y=-2(x-1)2-2向左平移1個(gè)單位,再向上平移1個(gè)單位,得到的拋物線的表達(dá)式為( 。

查看答案和解析>>

同步練習(xí)冊答案