已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點BCE)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.

如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DEAC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).解答下列問題:

(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?

(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求yt之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由.


(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.(圖(3)供同學(xué)們做題使用)


解:(1)∵點A在線段PQ的垂直平分線上,

AP = AQ.

        ∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,

∴∠EQC = 45°.

        ∴∠DEF =∠EQC.

        ∴CE = CQ.

        由題意知:CE = tBP =2 t,                    

            ∴CQ = t.

            ∴AQ = 8-t.

            在Rt△ABC中,由勾股定理得:AB = 10 cm .

           AP = 10-2 t.

            ∴10-2 t = 8-t.

            解得:t = 2.

            答:當(dāng)t = 2 s時,點A在線段PQ的垂直平分線上.     

   (2)過P,交BEM,

.

在Rt△ABC和Rt△BPM中,

        ∴ .   ∴PM = .

        ∵BC = 6 cm,CE = t,  ∴ BE = 6-t.

            ∴y = SABC-SBPE ==

= = .

,∴拋物線開口向上.

∴當(dāng)t = 3時,y最小=.

答:當(dāng)t = 3s時,四邊形APEC的面積最小,最小面積為cm2.

 

  (3)假設(shè)存在某一時刻t,使點P、QF三點在同一條直線上.

P,交ACN,

.

,∴△PAN ∽△BAC.

.

.

,.

NQ = AQ-AN,

NQ = 8-t() =

∵∠ACB = 90°,B、CE)、F在同一條直線上,

∴∠QCF = 90°,∠QCF = ∠PNQ.

∵∠FQC = ∠PQN,

∴△QCF∽△QNP .

.  ∴

    ∴

解得:t = 1.

答:當(dāng)t = 1s,點PQ、F三點在同一條直線上.       

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:把Rt△ABC和Rt△DEF按如圖甲擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠BAC=∠DEF=90°,∠ABC=45°,BC=9cm,DE=6cm,EF=8cm.如圖乙,△DEF從圖甲的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△DEF的頂點F出發(fā),以3cm/s的速度沿FD向點D勻速移動.當(dāng)點P移動到點D時,P點停止移動,△DEF也隨之停止移動.DE與AC相交于點Q,連接BQ、PQ,設(shè)移動時間為t(s).解答下列問題:
(1)設(shè)三角形BQE的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)當(dāng)t為何值時,三角形DPQ為等腰三角形?
(3)是否存在某一時刻t,使P、Q、B三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,把Rt△ABC和Rt△DEF按圖1擺放,(點C與E點重合),點B、C、E、F始終在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如圖2,△DEF從圖1出發(fā),以每秒1個單位的速度沿CB向△ABC勻速運動,同時,點P從A出發(fā),沿AB以每秒1個單位向點B勻速移動,AC與△DEF的直角邊相交于Q,當(dāng)P到達(dá)終點B時,△DEF同時停止運動,連接PQ,設(shè)移動的時間為t(s).解答下列問題:

(1)△DEF在平移的過程中,當(dāng)點D在Rt△ABC的邊AC上時,求t的值;
(2)在移動過程中,是否存在△APQ為等腰三角形?若存在,求出t的值;若不存在,說明理由.
(3)在移動過程中,當(dāng)0<t≤5時,連接PE,是否存在△PQE為直角三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•晉江市質(zhì)檢)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).解答下列問題:
(1)填空:CQ=
t
t
,AQ=
8-t
8-t
(用含t的式子表示);
(2)當(dāng)t為何值時,點P在以AQ為直徑的⊙M上?
(3)當(dāng)P、Q、F三點在同一條直線上時,如圖(3),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,把Rt△ABC和Rt△DEF按圖1擺放(點C與E重合),點B,C,E,F(xiàn)始終在同一條直線上,∠ACB=∠EDF=45°,AC=8,BC=6,EF=10.如圖2,△DEF從圖1位置出發(fā),以每秒1個單位的速度沿CB向△ABC勻速運動,同時,點P從點A出發(fā),沿AB以每秒1個單位的速度向點B勻速運動,AC與△DEF的直角邊相交于點Q,當(dāng)E到達(dá)終點B時,△DEF與點P同時停止運動,連接PQ,設(shè)移動的時間為t(s).解答下列問題:
(1)當(dāng)D在AC上時,求t的值;
(2)在P點運動過程中,是否存在點P,使△APQ為等腰三角形?若存在,求出t的值;若不存在,說明理由.
(3)連接PE,設(shè)四邊形APEQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•安溪縣質(zhì)檢)已知:把Rt△ABC和Rt△DEF按圖(a)擺放,點C與點E重合,點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8厘米,BC=6厘米,EF=9厘米.如圖(b),△DEF從圖(a)的位置出發(fā),以1厘米/秒的速度沿CB向△ABC勻速移動,點P同時從點B出發(fā),以2厘米/秒的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時移動即停止.記DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(秒)(0<t<4.5).求:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上;
(2)當(dāng)t為何值時,△APQ與△ABC相似;
(3)當(dāng)t為何值時,點P、Q、F在同一直線上.

查看答案和解析>>

同步練習(xí)冊答案