【題目】在平面直角坐標(biāo)系中,我們不妨把縱坐標(biāo)是橫坐標(biāo)的2倍的點稱為“理想點”.例如點(﹣2,﹣4),(1,2),(3,6)…都是“理想點”,顯然這樣的“理想點”有無數(shù)多個.
(1)若點M(2,a)是“理想點”,且在正比例函數(shù)y=kx(k為常數(shù),k≠0)圖象上,求這個正比例函數(shù)的表達式.
(2)函數(shù)y=3mx﹣1(m為常數(shù),且m≠0)的圖象上存在“理想點”嗎?若存在,請用含m的代數(shù)式表示出“理想點”的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:∵點M(2,a)是正比例函數(shù)y=kx(k為常數(shù),k≠0)圖象上的“理想點”,
∴a=4,
∵點M(2,4)在正比例函數(shù)y=kx(k為常數(shù),k≠0)圖象上,
∴4=2k,
解得k=2
∴正比例函數(shù)的解析式為y=2x
(2)
解:假設(shè)函數(shù)y=3mx﹣1(m為常數(shù),m≠0)的圖象上存在“理想點”(x,2x),
則有3mx﹣1=2x,
整理得:(3m﹣2)x=1,
當(dāng)3m﹣2≠0,即m≠ 時,解得:x= ,
當(dāng)3m﹣2=0,即m= 時,x無解,
綜上所述,當(dāng)m≠ 時,函數(shù)圖象上存在“理想點”,為( , );
當(dāng)m= 時,函數(shù)圖象上不存在“理想點”
【解析】(1)根據(jù)“理想點”,確定a的值,即可確定M點的坐標(biāo),代入正比例函數(shù)解析式,即可解答;(2)假設(shè)函數(shù)y=3mx﹣1(m為常數(shù),m≠0)的圖象上存在“理想點”(x,2x),則有3mx﹣1=2x,整理得:(3m﹣2)x=1,分兩種情況討論:當(dāng)3m﹣2≠0,即m≠ 時,解得:x= ,當(dāng)3m﹣2=0,即m= 時,x無解,即可解答.
【考點精析】解答此題的關(guān)鍵在于理解正比例函數(shù)的圖象和性質(zhì)的相關(guān)知識,掌握正比函數(shù)圖直線,經(jīng)過一定過原點.K正一三負二四,變化趨勢記心間.K正左低右邊高,同大同小向爬山.K負左高右邊低,一大另小下山巒.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點A的坐標(biāo)是(0,2),點B是x軸上的一個動點,始終保持△ABC是等邊三角形(點A、B、C按逆時針排列),當(dāng)點B運動到原點O處時,則點C的坐標(biāo)是 . 隨著點B在x軸上移動,點C也隨之移動,則點C移動所得圖象的解析式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有13位同學(xué)參加學(xué)校組織的才藝表演比賽,已知他們所得的分數(shù)互不相同,共設(shè)7個獲獎名額,某同學(xué)知道自己的比賽分數(shù)后,要判斷自己能否獲獎,在這13名同學(xué)成績的統(tǒng)計量中只需知道一個量,它是____.(填“眾數(shù)”“方差”“中位數(shù)”或“平均數(shù)”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四川某特產(chǎn)專賣店銷售核桃,其進價為每千克40元,按每千克60元銷售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷量可增加20千克.若該專賣店銷售這種核桃想要平均每天獲利2240元,請回答:
(1)每千克核桃應(yīng)降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折銷售?
(3)若該專賣店想獲得最大利潤W,核桃的單價應(yīng)定為多少元?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,屬于真命題的是( )
A.同位角相等
B.正比例函數(shù)是一次函數(shù)
C.平分弦的直徑垂直于弦
D.對角線相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果方程(m﹣1)x2|m|﹣1+2=0是一個關(guān)于x的一元一次方程,那么m的值是( 。
A. 0 B. 1 C. ﹣1 D. ±1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com