【題目】如圖,在矩形ABCD中,AB10,AD6,動(dòng)點(diǎn)P滿足SPABS矩形ABCD,則PAB周長(zhǎng)的最小值_____

【答案】10+2

【解析】

首先由SPABS矩形ABCD,得到動(dòng)點(diǎn)P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對(duì)稱點(diǎn)E,連接AE,連接BE,則BE的長(zhǎng)就是所求的最短距離,然后在RtABE中,由勾股定理可求得BE的值,繼而求得答案.

設(shè)△ABPAB邊上的高是h

SPABS矩形ABCD

ABhABAD,

hAD4,

∴動(dòng)點(diǎn)P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對(duì)稱點(diǎn)E,連接AE,連接BE,則BE的長(zhǎng)就是所求的最短距離.

RtABE中,∵AB10,AE4+48,

BE,

PA+PB的最小值為

∴△PAB周長(zhǎng)的最小值=10+,

故答案為:10+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某單位要建一個(gè)面積為48 m2的小倉(cāng)庫(kù),小倉(cāng)庫(kù)有一邊靠墻(墻長(zhǎng)10m),并在與墻平行的一邊開一道寬1 m的門,現(xiàn)有能圍成19 m的木板,求小倉(cāng)庫(kù)的長(zhǎng)與寬?

(注意:倉(cāng)庫(kù)靠墻的那一邊不能超過(guò)墻長(zhǎng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、P、BC是⊙O上的四個(gè)點(diǎn),∠APC=∠CPB60°.

1)求證:PA+PBPC

2)若BC,點(diǎn)P是劣弧AB上一動(dòng)點(diǎn)(異于AB),PA、PB是關(guān)于x的一元二次方程x2mx+n0的兩根,求m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn),、,其中是方程的兩根,且,過(guò)點(diǎn)的直線與拋物線只有一個(gè)公共點(diǎn)

1)求、兩點(diǎn)的坐標(biāo);

2)求直線的解析式;

3)如圖2,點(diǎn)是線段上的動(dòng)點(diǎn),若過(guò)點(diǎn)軸的平行線與直線相交于點(diǎn),與拋物線相交于點(diǎn),過(guò)點(diǎn)的平行線與直線相交于點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,GBD上一點(diǎn),連接CG并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F,交AD于點(diǎn)E

(1)求證:AG=CG;

(2)求證:AG2=GE·GF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O直徑,C是⊙O上一點(diǎn),COAB于點(diǎn)O,弦CDAB交于點(diǎn)F,在AB的延長(zhǎng)線上取一點(diǎn)E,使EFED,過(guò)點(diǎn)A作⊙O的切線交ED的延長(zhǎng)線于點(diǎn)G.

1)求證:GE是⊙O的切線;

2)若OFOB13,⊙O的半徑為3,求DEAG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某初中對(duì) 600 名畢業(yè)生中考體育測(cè)試坐位體前屈成績(jī)進(jìn)行整理,繪制成 如下不完整的統(tǒng)計(jì)圖:

根據(jù)統(tǒng)計(jì)圖,回答下列問(wèn)題。

(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形統(tǒng)計(jì)圖中,b= ,得 8 分所對(duì)應(yīng)扇形的圓心角度數(shù)為 ;

(3)在本次調(diào)查的學(xué)生中,隨機(jī)抽取 1 名男生,他的成績(jī)不低于 9 分的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程中,沒(méi)有實(shí)數(shù)根的是( 。

A.2x+30B.x210C.D.x2+x+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD120°,CEAD,且CEBC,連接BE交對(duì)角線AC于點(diǎn)F,則∠EFC_____°.

查看答案和解析>>

同步練習(xí)冊(cè)答案