【題目】《莊子·天下》:“一尺之棰,日取其半,萬世不竭.”意思是說:一尺長的木棍,每天截掉一半,永遠也截不完.我國智慧的古代人在兩千多年前就有了數(shù)學極限思想,今天我們運用此數(shù)學思想研究下列問題.

(規(guī)律探索)

(1)如圖1所示的是邊長為1的正方形,將它剪掉一半,則S陰影11__________;

如圖2,在圖1的基礎上,將陰影部分再裁剪掉—半,則S陰影21()2_______

同種操作,如圖3,S陰影31()2()3__________;

如圖4S陰影41()2()3()4___________;

……

若同種地操作n次,則S陰影n1()2()3-…-()n_________.

(規(guī)律歸納)

(2)直接寫出+…+的化簡結(jié)果:_________.

(規(guī)律應用)

(3)直接寫出算式+…+的值:__________.

【答案】1;;;()n;(2;(3.

【解析】

(1)結(jié)合圖形計算即可求出,按照規(guī)律推出S陰影n的表達式即可;

2)由上面的規(guī)律可得1----…-=,然后轉(zhuǎn)換得到+…+再化簡即可;

3)把(2)的化簡結(jié)果計算即可得出.

(1)根據(jù)圖像和計算直接可得S陰影11=;

S陰影21()2

S陰影31()2()3;

S陰影41()2()3()4;

由此可以發(fā)現(xiàn)規(guī)律1()2()3-…一直減下去,答案就等于減去的最后一個數(shù)的值;

S陰影n1()2()3-…-()n()n.

(2)由上面的規(guī)律可得1----…-=

+…+=1-=.

(3) +…+=1-=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】國家規(guī)定“中小學生每天在校體育活動時間不低于1小時”.為此,某市就“每天在校體育活動時間”的問題隨機抽樣調(diào)查了321名初中學生.根據(jù)調(diào)查結(jié)果將學生每天在校體育活動時間t(小時)分成,,,四組,并繪制了統(tǒng)計圖(部分).

組:組:組:組:

請根據(jù)上述信息解答下列問題:

1組的人數(shù)是  ;

2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在  組內(nèi);

3)若該市約有12840名初中學生,請你估算其中達到國家規(guī)定體育活動時間的人數(shù)大約有多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線分別交AD于點EF,BE,CF相交于點G.

(1)求證:BECF;

(2)AB=a,CF=b,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,把RABC繞著B點逆時針旋轉(zhuǎn),得到RtDBE,點EAB上 .

(1)若∠BDA=70°,求∠BAC的度數(shù);

(2)若BC=8,AC=6,求△ABDAD邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點A0,2),B4,0),C4,3)三點.

1)建立平面直角坐標系并描出AB、C三點

2)求ABC的面積;

3)如果在第二象限內(nèi)有一點Pm,1),且四邊形ABOP的面積是ABC的面積的兩倍;求滿足條件的P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

在數(shù)軸上5與﹣2所對的兩點之間的距離:|5﹣(﹣2)|=7;

在數(shù)軸上﹣23所對的兩點之間的距離:|﹣2﹣3|=5;

在數(shù)軸上﹣8與﹣5所對的兩點之間的距離:|(﹣8)﹣(﹣5)|=3

在數(shù)軸上點A、B分別表示數(shù)a、b,則A、B兩點之間的距離AB=|a﹣b|=|b﹣a|

回答下列問題:

(1)數(shù)軸上表示﹣2和﹣5的兩點之間的距離是_____;

數(shù)軸上表示數(shù)x3的兩點之間的距離表示為_____;

數(shù)軸上表示數(shù)__________的兩點之間的距離表示為|x+2|,;

(2)七年級研究性學習小組在數(shù)學老師指導下,對式子|x+2|+|x﹣3|進行探究:

①請你在草稿紙上畫出數(shù)軸,當表示數(shù)x的點在﹣23之間移動時,|x﹣3|+|x+2|的值總是一個固定的值為:_____

②請你在草稿紙上畫出數(shù)軸,要使|x﹣3|+|x+2|=7,數(shù)軸上表示點的數(shù)x=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD

(1) 如圖1,若AB為邊在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度數(shù)

(2) 如圖2,∠ABC=α,∠ACD=β,BC=6,BD=8

① 若α=30°,β=60°,AB的長為

② 若改變α、β的大小,但α+β=90°,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,DE分別為AB、AC上的點,線段BECD相交于點O,且

求證:

求證: ;

M、N分別是BECD的中點,過MN的直線交ABP,交ACQ,線段AP、AQ相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某花店準備購進甲、乙兩種花卉,若購進甲種花卉20盆,乙種花卉50盆,需要720元;若購進甲種花卉40盆,乙種花卉30盆,需要880元.

(1)求購進甲、乙兩種花卉,每盆各需多少元?

(2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準備拿出800元全部用來購進這兩種花卉,設購進甲種花卉x盆,全部銷售后獲得的利潤為W元,求W與x之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,考慮到顧客需求,要求購進乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過甲種花卉數(shù)量的8倍,那么該花店共有幾種購進方案?在所有的購進方案中,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案