【題目】二次函數(shù)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線,下列結(jié)論:①;;④當時, 的增大而增大.其中正確的結(jié)論有(  

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】試題分析:根據(jù)拋物線的對稱軸為直線x=﹣=2,則有4a+b=0正確;

觀察函數(shù)圖象得到當x=﹣3時,函數(shù)值y0,則9a﹣3b+c0,即9a+c3b,故錯誤;

由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根據(jù)拋物線開口向下得a0,于是有8a+7b+2c0,故正確;

由于對稱軸為直線x=2,根據(jù)二次函數(shù)的性質(zhì)得到當x2時,yx的增大而減小,故錯誤.

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關系

1)如圖a,若ABCD,點PAB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+D,得∠BPD=∠B﹣∠D.將點P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關系?請證明你的結(jié)論;

2)在圖b中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關系?(不需證明)

3)根據(jù)(2)的結(jié)論求圖d中∠A+B+C+D+E+F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】供電局的電力維修工要到30千米遠的郊區(qū)進行電力搶修.技術工人騎摩托車先走,15分鐘后,搶修車裝載著所需材料出發(fā),結(jié)果他們同時到達.已知搶修車的速度是摩托車的1.5倍,求這兩種車的速度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MAN=120°,AC平分∠MAN

1)在圖1中,若∠ABC=ADC=90°,求證:AB+AD=AC;

2)在圖2中,若∠ABC+ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】魔術大師夏爾巴比耶90歲時定義了一個魔法三角陣,三角陣中含有四個區(qū)域(三個邊區(qū)域和一個核心區(qū)域,如圖1中的陰影部分),每個區(qū)域都含有5個數(shù),把差相同的連續(xù)九個正整數(shù)填進三角陣中,每個區(qū)域的5個數(shù)的和必須相同。例如:圖2中,把相差為1的九個數(shù)(19)填入后,三個邊區(qū)域核心區(qū)域的數(shù)的和都是22,即6+1+9+2+4=22,4+2+8+3+5=22,5+3+7+1+6=222+9+1+7+3=22

1)操作與發(fā)現(xiàn):

在圖3中,小明把差為1的連續(xù)九個正整數(shù)(19)分為三組,其中1、23為同一組,4、56為同一組,7、89為同一組,把同組數(shù)填進同一花紋的中,生成了一個符合定義的魔法三角陣,且各區(qū)域的5個數(shù)的和為28,請你在圖3中把小明的發(fā)現(xiàn)填寫完整.

2)操作與應用:

根據(jù)(1)發(fā)現(xiàn)的結(jié)果,把差為8的連續(xù)九個正整數(shù)填進圖4中,仍能得到符合定義的魔法三角陣,且各區(qū)域的5個數(shù)的和為2019.

①設其中最小的數(shù)為,則最大的數(shù)是_________;(用含的式子表示).

②把圖4中的9個數(shù)填寫完整,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC

1)若AB=4AC=5,則BC邊的取值范圍是  ;

2)點DBC延長線上一點,過點DDE∥AC,交BA的延長線于點E,若∠E=55°,∠ACD=125°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,一螞蟻從A點出發(fā),沿著ABCDA…循環(huán)爬行,其中A點的坐標為(2,﹣2),B點的坐標為(﹣2,﹣2),C點的坐標為(﹣2,6),D點的坐標為(2,6),當螞蟻爬了2018個單位時,螞蟻所處位置的坐標為(  )

A. (﹣2,0B. 4,﹣2C. (﹣2,4D. 0,﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過, 兩點.

1)求對應的函數(shù)表達式;

2)將先向左平移1個單位,再向上平移4個單位,得到拋物線,將對應的函數(shù)表達式記為,求對應的函數(shù)表達式;

3)設,在(2)的條件下,如果在xa內(nèi)存在某一個x的值,使得成立,根據(jù)函數(shù)圖象直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD置于直角坐標系中,ABx軸,BCy軸,AB=4,BC=3,點B(5,1)翻折矩形紙片使點A落在對角線DB上的H處得折痕DG

(1)求AG的長;

(2)在坐標平面內(nèi)存在點Mm,-1)使AM+CM最小,求出這個最小值;

(3)求線段GH所在直線的解析式.

查看答案和解析>>

同步練習冊答案