【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數y1=kx+b與反比例函數y2=(m<0)圖象的兩個交點,AC⊥x軸于C.
(1)求出k,b及m的值.
(2)根據圖象直接回答:在第二象限內,當y1>y2時,x的取值范圍是 ________.
(3)若P是線段AB上的一點,連接PC,若△PCA的面積等于,求點P坐標.
【答案】(1) k= ,b=,m=﹣2;(2) ﹣4<x<﹣1;(3) 點P的坐標為(﹣2,)
【解析】
(1)把點B的坐標代入y=即可求出m的值,把點A的坐標代入反比例函數的解析式就可求出a,然后把A、B的坐標代入一次函數的解析式就可解決問題;
(2)運用數形結合的思想,結合圖象即可解決問題;
(3)設點P的橫坐標為xP,根據點A的坐標可得到AC的長,然后根據條件即可求出xP,然后將xP代入一次函數的解析式就可求出點P的坐標.
(1)把B(﹣1,2)代入y=得m=﹣1×2=﹣2,
把A(﹣4,a)代入y=﹣得a=﹣=,
把A(﹣4,),B(﹣1,2)代入y=kx+b,
得,
解得:,
∴k= ,b=,m=﹣2;
(2)結合圖象可得:在第二象限內,當y1>y2時,x的取值范圍是﹣4<x<﹣1,
故答案為﹣4<x<﹣1;
(3)設點P的橫坐標為xP,
∵AC⊥x軸,點A(﹣4,),
∴AC=.
∵△PCA的面積等于,
∴××[xP﹣(﹣4)]= ,
解得xP=﹣2,
∵P是線段AB上的一點,
∴yP=×(﹣2)+=,
∴點P的坐標為(﹣2, ).
科目:初中數學 來源: 題型:
【題目】如圖,△ABC、△CDE都是等腰三角形,且CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于點O,點M,N分別是線段AD,BE的中點,以下4個結論:①AD=BE;②∠DOB=180°-α;③△CMN是等邊三角形;④連OC,則OC平分∠AOE.正確的是( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,連接AC,∠DAC=∠BAC.
(1)求證:AD=DC;
(2)若∠D=120°,求∠ACB的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我國南宋數學家楊輝(約13世紀)所著的《詳解九章算術》(1261年)一書中,用下圖的三角形解釋二項和的乘方規(guī)律.楊輝在注釋中提到,在他之前北宋數學家賈憲(1050年左右)也用過上述方法,因此我們稱這個三角形為“楊輝三角”或“賈憲三角”.楊輝三角兩腰上的數都是,其余每一個數為它上方(左右)兩數的和.事實上,這個三角形給出了的展開式(按的次數由大到小的順序)的系數規(guī)律.例如,此三角形中第三行的個數,恰好對應著展開式中的各項系數,第四行的個數,恰好對應著展開式中的各項系數,等等.請依據上面介紹的數學知識,解決下列問題:
(1)寫出的展開式;
(2)利用整式的乘法驗證你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.
(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點.如圖(2)
①求∠CPD的度數;
②求證:P點為△ABC的費馬點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,直徑BD交AC于E,過O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求證:OFDE=OE2OH;
(2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據要求解方程
(1)x2+3x﹣4=0(公式法);
(2)x2+4x﹣12=0(配方法);
(3)(x+3)(x﹣1)=5;
(4)(x+4)2=5(x+4).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BF和CE分別是鈍角△ABC(∠ABC是鈍角)中AC、AB邊上的中線,又BF⊥CE,垂足是G,過點G作GH⊥BC,垂足為H.
(1)求證:GH2=BHCH;
(2)若BC=20,并且點G到BC的距離是6,則AB的長為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)(模型建立)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經過點C,過A作AD⊥ED與D,過B作BE⊥ED于E,求證:△BEC≌△CDA;
(2)(模型應用):已知直線與y軸交于A點,與x軸交于B點,將線段AB繞點B逆時針旋轉90度,得到線段BC,過點A,C作直線,求直線AC的解析式;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com